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Abstract

From observations of the Cosmic Microwave Background (CMB), we know that the initial
density fluctuations in the early Universe followed a nearly Gaussian distribution, with
small-amplitude perturbations distributed homogeneously across space. As the Universe
evolved, gravitational instability amplified these perturbations, leading to the formation
of large-scale structures. Over time, the initially Gaussian density field became increas-
ingly non-Gaussian due to nonlinear gravitational evolution, making the extraction of
non-Gaussian information both crucial and challenging, requiring advanced statistical
methods.

In this project, we employ the scattering transform—a statistical tool inspired by convolu-
tional neural networks—to analyze weak lensing convergence maps and constrain cosmo-
logical parameters. The scattering transform applies wavelet filters consisting of Gaussian
envelopes modulated by harmonic oscillations of varying orientations and scales, perform-
ing convolutions on the input convergence maps. By taking the modulus of the convolved
maps and averaging over spatial domains, we obtain a compact set of scattering coeffi-
cients that serve as robust summary statistics encoding non-Gaussian features.

This method is applied to the CosmoGridV1 simulations, a large suite of N -body sim-
ulations spanning a wide range of cosmologies. Cosmological parameter forecasts are
first derived using the Fisher information matrix, providing a theoretical estimate of the
constraining power of the scattering coefficients. In addition, we develop a deep learning-
based emulator trained on simulation outputs across different cosmological parameters,
including the effects of observational noise and systematic uncertainties. This emulator
enables rapid predictions of scattering transform coefficients without the need for repeated
expensive simulations.

We further perform Markov Chain Monte Carlo (MCMC) analyses to sample posterior
distributions of cosmological parameters, using the emulator predictions in combination
with realistic mock weak lensing data. Special attention is given to the impact of intrinsic
alignments, shape noise, multiplicative bias and photometric uncertainty. Our results
confirm that a tomographic analysis—including both auto- and cross-correlations between
redshift bins—significantly enhances the precision of cosmological constraints, particularly
on parameters such as Ωm and σ8.
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Chapter 1

Introduction

Cosmology is the scientific study of the universe as a whole, including its origin, evolution,
and structure formation. It tries to answer fundamental questions about the universe, such
as how it began, what it is made of, and how it changes over time. The modern view of
cosmology is that the universe started with the Big Bang about 13.8 billion years ago,
a very hot and dense state from which space and time emerged. Shortly after the Big
Bang, the universe experienced a very rapid and exponential expansion, called inflation
[1], which is believed to be driven by some scalar fields [2]. During inflation, quantum
fluctuations were stretched to cosmic scales, becoming the seeds for the growth of struc-
tures in the universe. These fluctuations also left imprints on the Cosmic Microwave
Background (CMB), which we can observe today.

After the inflation era, the universe cooled down, allowing protons and neutrons to com-
bine and form light atomic nuclei, such as hydrogen and helium. This process is called Big
Bang Nucleosynthesis. The relative abundances of these elements provide strong evidence
for the Big Bang model and match well with observations of the early universe [3]. After
the CMB was emitted, the universe entered a period called the dark age. During this
time, the universe was filled with neutral hydrogen and helium, and no stars or galaxies
had formed yet. Because there were no light-emitting sources, this era is called “dark”.
However, small density fluctuations in the matter distribution, seeded during inflation,
began to grow under the influence of gravity. These fluctuations eventually led to the
formation of the first stars and galaxies, marking the end of the dark age.

The formation of the first stars, known as Population III stars, started the process of
reionization. Ultraviolet radiation from these stars ionized the surrounding neutral hy-
drogen. Galaxies continued to evolve through mergers and interactions, leading to the
diverse structures we observe today. The large-scale structure of the universe, including
galaxy clusters, cosmic voids, and filaments, also gradually formed mainly due to gravi-
tational interactions.

In the present epoch, the universe’s expansion is accelerating again, a phenomenon at-
tributed to dark energy. Observations of distant Type Ia supernovae [4] provide evidence
for this accelerated expansion. Dark energy, often modeled as a cosmological constant Λ,
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now makes up about 70% of the universe’s total energy density.

To study the observed structures in the universe, many statistical methods have been
proposed, such as N -point correlation functions, peak count statistics, and Minkowski
functionals. In this thesis, we will focus on a novel method called the scattering trans-
form, which generates a series of coefficients to help us understand cosmic structures on
different scales.

In this chapter, we will first introduce some basic concepts of cosmology. In Section 1.1,
we will discuss the expansion and components of the universe, as well as the Friedmann
equations that connect matter density, curvature, and the evolution of the universe. In
Section 1.2, we will introduce some frequently used cosmological distances. Finally, in
Section 1.3, we will discuss the ΛCDM model, which is the standard model of cosmology.

In the later chapters, we will delve into the formalism of the two-point correlation func-
tion in Chapter 2. Chapter 3 will introduce the weak lensing effect, its properties, and
its application in exploring the matter distribution of the universe. In Chapter 4, we will
present the concept of the scattering transform, detailing its use in extracting information
from weak lensing maps and its connection to traditional N -point correlation functions.
Chapter 5 will focus on the neural network-based emulator, which predicts scattering
transform coefficients for different cosmologies. Chapter 6 will describe the simulation
framework employed for the scattering transform analysis. Finally, in Chapter 7, we will
present the Fisher forecast using the scattering transform on various weak lensing maps
and provide MCMC constraints on cosmological parameters.

1.1 Basic knowledge of cosmology
A lot of evidence has shown that the universe is expanding [5, 6, 7, 8]. This means that
the distance in nowadays is bigger than it was in the past. So, it is convenient to express
the distance by introducing the scale factor a. The value of scale factor is set to be a0 = 1
today for convenience, where the subscript zero here means present time. At earlier times,
a was smaller than it is today. We can imagine a grid being placed in space, similar to
Fig. 1.1, that expands uniformly over time. Points on the grid, representing observers at
rest, keep their coordinates fixed, meaning the comoving distance between two points—
which simply reflects the difference in their coordinates and can be measured by counting
grid cells as shown in Fig. 1.1—remains unchanged. However, the physical distance is
proportional to the scale factor and changes as time progresses [9]. The mathematical
relation between physical distance, dp and comoving distance, χ, is usually expressed as:

dp ∝ a (t)χ . (1.1)

As a result of the universe’s expansion, the physical wavelength of light emitted by dis-
tant objects is stretched in proportion to the scale factor. Consequently, the observed
wavelength is longer than it was at the time of emission. This is called redshift, defined
as Eq. (1.2) [9]:
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Figure 1.1: Expansion of the universe: The comoving distance between points x1 and
x2 on the coordinate grid remains unchanged during expansion, meaning |x1 − x2| stays
constant. However, the physical distance is proportional to the scale factor and the
comoving distance, dp = a(t) |x1 − x2|, and thus increases as time progresses.

1 + z ≡ λobs
λemit

=
aobs
aemit

=
1

aemit

, (1.2)

where λobs is the observed wavelength, λemit is the wavelength when light was emitted,
aobs is the scale factor at the time when it is observed, which is usually set to 1, and aemit

is the emission scale factor. So, the redshift and scale factor relation could be written as:

1 + z (t) =
1

a (t)
. (1.3)

Apart from the scale factor and its evolution, the universe’s smoothness is defined by
another parameter: its geometry. There are three possibilities, described by curvature
parameter k (also see in Fig. 1.2):

• Flat (Euclidean): the particles remain parallel as they continue their motion, k = 0

• Closed: the initially parallel particles slowly converge, similar to how lines of con-
stant longitude meet at the poles on a 2-sphere, k > 0

• Open: the initially parallel particles diverge, akin to two marbles rolling off a saddle,
k < 0

Before using mathematical equations to express the distance between two points in the
universe, we have to introduce the two basic properties for matter distribution of the
universe, usually called cosmological principle [11]:

• Homogeneity: Homogeneity means that the universe has a uniform composition and
structure when averaged over sufficiently large distances (> 100 Mpc).

• Isotropy: Isotropy means that the universe appears the same in all directions on
large scales (> 100 Mpc).

3
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Figure 1.2: The geometry of the universe is characterized by curvature parameter k. From
top to bottom: a closed universe with k > 0, open universe with k < 0 and flat universe
with k = 0. Figure from [10]

Homogeneity shows that on large scales, the distribution of matter and energy is roughly
the same everywhere, regardless of the location of the observer. And isotropy means that
no matter which direction an observer looks, the large-scale properties of the universe
(such as the distribution of galaxies or the Cosmic Microwave Background radiation) are
uniform. Essentially, there is no preferred direction in the universe.

With these two properties, it is natural for us to measure the distance between points
using spherical coordinate in an expanding curved universe:

dl2 = a2 (t)

[
dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdφ2

]
, (1.4)

where r is the comoving distance in radial direction, r ∈ [0,∞], ϑ is the polar angle,
ϑ ∈ [0, π] and φ is the azimuth angle, φ ∈ [0, 2π).

To handle all three curvature cases simultaneously, we define:

fk (χ) ≡


k−1/2 sin

(
k1/2χ

)
, (k > 0)

χ, (k = 0)

|k|−1/2 sinh
(
|k|−1/2 χ

)
, (k < 0) .

(1.5)

Using Einstein summation convention, we could express Eq. (1.4) as:

dl2 = γijdx
idxj , (1.6)

where both i and j should go through the summation over 1 to 3, meaning the sum in
all directions of three-dimensional space. γ is called metric tensor, which could also be

4
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expressed using a diagonal matrix in this case:

γij =

 a2(t)
1−kr2

0 0

0 a2 (t) r2 0
0 0 a2 (t) r2 sin2 (ϑ)

 . (1.7)

However, according to general relativity, due to the influence of gravity, time is no longer
independent of space but is closely connected to it, with both being affected by gravity.
To ensure the invariance of the spacetime interval, we need to introduce a time component
in the metric tensor, which makes the metric tensor introduced above a four dimensional
tensor:

ds2 = gµνdx
µdxν

= −dt2 + a2 (t)

[
dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdφ2

]
,

(1.8)

where we use the natural unit system, so the speed of light is set to 1, c = 1. The
index, Greek letter, µ and ν range from 0 to 3, where 0 represents time component and
1 to 3 represent spatial component. The four dimensional metric tensor, gµν , which is
called Friedmann–Lemaître–Robertson–Walker (FLRW) metric, is used to describe the
homogenous and isotropic universe. So, with the time component included, the matrix
form of the tensor is written as:

gµν =


−1 0 0 0

0 a2(t)
1−kr2

0 0

0 0 a2 (t) r2 0
0 0 0 a2 (t) r2 sin2 ϑ

 . (1.9)

Using FLRW metric, we could compute the metric connection:

Γα
λµ =

1

2
gαν (∂λgµν + ∂µgλµ − ∂νgµλ) , (1.10)

with the partial derivatives ∂µ with respect to the coordinates (t, r, ϑ, φ). And from this,
calculating Ricci tensor, which represents gravitational effects due to matter, is possible:

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

λρΓ
ρ
µν − Γρ

µλΓ
λ
νρ . (1.11)

With Ricci tensor Rµν and metric tensor gµν , we could define Einstein tensor, Gµν , which
describes the curvature of spacetime due to the presence of matter and energy, in the
following way:

Gµν ≡ Rµν −
1

2
Rgµν , (1.12)

where R is the Ricci scalar, defineds as R = gµνRµν and represents an overall “average”
curvature of spacetime, providing a scalar measure of how space is curved at a particular
point.

Having introduced the Einstein tensor, which encapsulates the curvature of spacetime
due to the presence of mass and energy, it is now essential to connect this geometric
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framework with the physical sources of gravity. The relationship between the curvature
of spacetime and the distribution of matter and energy is formalized in Einstein’s field
equations in Eq. (1.13). These equations express how the Einstein tensor is directly
related to the energy-momentum tensor, Tµν , which describes the density and flow of
energy and momentum in spacetime. By linking geometry to physics, the Einstein field
equations provide the foundation for understanding how matter influences the structure
of the universe.

Gµν + Λgµν = 8πGTµν , (1.13)
where G is gravitational constant and Λ, also called cosmological constant, represents a
constant energy density that fills space homogeneously, often associated with dark energy.
Dark energy is responsible for the observed accelerated expansion of the universe. It acts
as a repulsive force, pushing spacetime apart.
The general expression for energy-momentum tensor is written as:

Tµν = (ρ+ p)UµUν + pgµν , (1.14)

where ρ is energy density, p is pressure and U is four-velocity. In the case of a universe
depicted by FLRW metric, Eq. (1.14) can be expressed in a simpler form as a diagonal
matrix, in Eq. (1.15), where only the energy density term ρ and the pressure term p are
present. In this form, it can be interpreted as the energy-momentum tensor of a perfect
fluid.

Tµν =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.15)

According to Eq. (1.13), we could further derive equations that detail the evolution of
the expanding universe. By setting µ = ν = 0, we could get the time-time component of
Eq. (1.13):

G00 = Λg00 = 8πGT00 . (1.16)
By substituting the tensor components on both sides of the equation with their corre-
sponding expressions, we arrive at the first Friedmann equation:

H2 =

(
ȧ

a

)2

=
8πGρ

3
− k

a2
+

Λ

3
, (1.17)

where H here denotes Hubble parameter, ȧ is the time derivative of scale factor and ρ
represents the energy density of the universe’s constituents, such as matter and radiation.
Equating the spatial terms on both sides of Eq. (1.13) with µ = ν = i where i = 1, 2, 3,
we can get:

Gii = Λgii = 8πGTii . (1.18)
For all three indices of the spatial terms, we are able to derive:

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.19)
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where ä is the acceleration of scale factor and p is the pressure. Since the second Friedmann
equation includes both the pressure term and the energy density term, we will use the
so-called equation of state to link these two quantities:

p = wρ , (1.20)

where w is known as the equation-of-state parameter. It characterizes the relationship
between the pressure p and the energy density ρ of the various components of the universe,
such as matter, radiation, and dark energy.

• Non-relativistic matter: wm = 0.

• Radiation: wr =
1
3
.

• Dark energy: wΛ = −1.

Combining two Friedmann equations Eq. (1.17) and Eq. (1.19), we could derive the equa-
tion governing the evolution of energy density:

ρ̇+ 3
ȧ

a
(p+ ρ) = 0 , (1.21)

By applying Eq. (1.21), we could further derive the evolution of energy density with in
scale factor, where the general expression is given:

ρ ∝ a−3(1+w) , (1.22)

Then the energy density of different constituents is shown:

• Matter: ρ ∝ a−3 .

• Radiation: ρ ∝ a−4 .

• Cosmological constant: ρ = const.

1.2 Distance
Having established the fundamental dynamics of the universe’s expansion using the Fried-
mann equations, we now shift our focus to the concept of distance in cosmology. Under-
standing how distances are defined and measured in an expanding universe is essential
for interpreting observations and testing cosmological models. In this section, we will
explore various types of cosmological distances. The first concept is the physical dis-
tance dp (t), defined as the separation between two objects measured on a hypersurface
of constant cosmic time. To determine the physical distance between two galaxies (one
located at r = 0 and the other at r = rA) at a given time t, we apply the metric, since
dp (t) =

∫ rA
0
ds. This requires integrating along the path where t, ϑ, φ = const, leading

ds2 = a2 (t) dχ2 = a2 (t) dr2

1−kr2
, and then we get:

7
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dp (t) = a (t)

∫ rA

0

dr√
1− kr2

= a (t)

∫ χA

0

dχ

=


k−1/2a (t) arc sin

(
k1/2rA

)
, (k > 0)

a (t) rA, (k = 0)

|k|−1/2 a (t) arc sinh
(
|k|1/2 rA

)
, (k < 0)

≡ a (t) f−1
k (rA) = a (t)χA ,

(1.23)

where f−1
k (rA) is the inverse function of Eq. (1.5), defined as:

f−1
k (rA) =

∫ rA

0

dr√
1− kr2

=

∫ χA

0

dχ =


k−1/2arc sin

(
k1/2rA

)
, (k > 0)

rA, (k = 0)

|k|−1/2 arc sinh
(
|k|1/2 rA

)
, (k < 0)

. (1.24)

With the mathematical expression for physical distance, we could now describe comoving
distance using Eq. (1.1):

χA =
dp

a
= f−1

k (rA) . (1.25)

However, in actual observations, measuring the radial distance r directly is challenging.
Instead, redshift is a more readily measurable quantity, making it a common and practical
tool for expressing distances in cosmological contexts. We will then use redshift to express
the distance. For light, it travels along null geodesics, which corresponds to a zero value
of the FLRW metric interval (let’s choose the coordinate so that light travles along radial
direction):

ds2 = −dt2 + a2 (t)
dr2

1− kr2
= −dt2 + a2 (t) dχ2 = 0 . (1.26)

Then, the comoving distance is shown:

χ =

∫ t0

t1

dt

a (t)
=

∫ 1

1
1+z

da

a

1

da/dt
=

∫ z

0

dz′

H (z′)
. (1.27)

The distance-redshift relation in Eq. (1.27) would be helpful if a (t) were known. However,
we can use the observed relation to infer a (t) or H (z), but this requires a version where
“distance” is replaced by a directly observable quantity. One such observable quantity
is the angular diameter distance, which relates an object’s physical size to its observed
angular size.
In Euclidean geometry (see Fig. 1.3), it’s easy to see that:

S = ϑdA or dA =
S

ϑ
. (1.28)

Accordingly, we define:
dA ≡ Sp

ϑ
, (1.29)

8
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Figure 1.3: Defining the angular diameter distance

where Sp is the proper diameter of the object when the light we see left it, and ϑ is the
observed angle. From the FLRW metric, the physical length Sp corresponding to an angle
ϑ is, from ds2 = a2 (t) r2dϑ2 =⇒ Sp = a (t) rϑ. Thus, the general expression is given:

dA (z) = a (t) r =
r

1 + z
=
fk (χ)

1 + z
=

1

1 + z
fk

(∫ z

0

dz′

H (z′)

)
. (1.30)

1.3 ΛCDM model
After establishing key concepts like physical and comoving distances, as well as the uni-
verse’s expansion, it is crucial to introduce the model that most accurately describes the
universe’s large-scale structure and evolution. The widely accepted framework in modern
cosmology is the Lambda Cold Dark Matter (ΛCDM) model. This model offers a robust
explanation for the cosmological observations, such as the Cosmic Microwave Background
(CMB) radiation, the distribution of galaxies, clusters and cosmic voids in the large-scale
structures of the universe, baryonic acoustic oscillations and so on. What’s more impor-
tant is that this model provides a comprehensive account of the universe’s composition,
like its name, cold dark matter and dark energy. Next, we will introduce dark matter and
dark energy from both a theoretical and conceptual perspective. Based on Eq. (1.17), we
could reformulate the equation in the case of a a flat universe by setting k = 0:

8πG

3H2

∑
i

ρi = 1 , (1.31)

where we have absorbed dark energy term, Λ/3, into energy density ρi, so ρi here refers
to radiation, matter and dark energy with different indices. Here the factor 8πG

3H2 is the
reciprocal of critical density, as defined in Eq.(1.32), serves as the threshold distinguishing
between closed, open and flat universe.

ρcr ≡
3H2

8πG
. (1.32)

The current value of critical density is ρcr = 3H2
0

8πG
= 1.8788×10−29h2g·cm−3 [9]. By dividing

all energy densities with the critical density, we could define the density parameters, which
indicates the percentage of different constituents in the universe:

Ωi ≡
ρi
ρcr

. (1.33)
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Thus, we have: ∑
i

Ωi = 1 . (1.34)

After introducing matter and dark energy through the Friedmann equation, we now turn
to a conceptual explanation of these components, focusing on their roles in structure for-
mation and cosmic expansion.

Cold dark matter: The concept of cold dark matter was first proposed by Fritz Zwicky
[12] to explain the discrepancy between the theoretical prediction of the rotation speed of
galaxies and the observational values. Subsequent observations, like gravitational lensing
and CMB radiation, further confirm the existence of dark matter. Unlike normal mat-
ter, dark matter does not interact with the electromagnetic force. This means it does
not absorb, reflect or emit light, making it invisible. Therefore, we could only study the
distribution of dark matter using visible ordinary matters. The word “cold” indicates
that dark matter particles move at non-relativistic speed, meaning they are slow-moving
compared to the speed of light. Cold dark matter allows small-scale structures, such as
galaxies, to form and leads to a “bottom-up” structure formation order. Besides the cold
dark matter, the ordinary matter is called baryonic matter, which is made up of proton
and neutrons, and also constitutes the total matter. According to Dark Energy Survey
(DES) Year 3 Result [13], the percentage of total matter is Ωm = 0.339+0.032

−0.031 with 68%
confidence limits using ΛCDM model.

Dark energy: The concept of dark energy was introduced to explain the accelerated
expansion of the universe, first observed through the study of distant supernovae in the
late 1990s [4]. These observations revealed that the expansion rate of the universe is not
slowing down, as initially expected, but rather accelerating. This unexpected behavior
could not be explained by ordinary matter or dark matter alone, leading to the proposal
of dark energy as a new form of energy that permeates space and exerts a repulsive gravi-
tational effect. Unlike dark matter, which interacts gravitationally with ordinary matter,
dark energy is thought to act uniformly throughout the universe, causing the accelerated
expansion. It does not interact with light or other particles, making it detectable only
through its influence on cosmic expansion and large-scale structures. Dark energy is often
modeled as a cosmological constant (Λ) in the ΛCDM model, representing a constant
energy density filling space homogeneously. According to the Planck 2018 Results [14],
dark energy constitutes approximately ΩΛ = 0.6847±0.0073 of the total energy density of
the universe, with a density parameter of ΩΛ ≈ 0.7, making it the dominant component
driving the universe’s expansion.

According to Eq.(1.19), the expansion of the universe requires the equation of state of
dark energy, wDE < −1

3
to make the second Friedmann equation greater than zero:

ä

a
= −4πG

3
(ρ+ 3p) = −4πG

3
(1 + 3wDE) ρ > 0 . (1.35)

Fluids for which
ρ+ 3p > 0 , (1.36)
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satisfy the strong energy condition. This means that, for dark energy to drive the
accelerated expansion of the universe, it must violate this condition. The simplest ap-
proach to modeling dark energy is to set wDE = −1, resulting in an exponential expansion
a (t) ∝ exp (H0t), where H0 is the current value of Hubble parameter. Another alternative
for dark energy is the quintessence model, where the dark energy adheres to the weak
energy condition:

ρ+ p > 0 , (1.37)
which implies weff > −1. The case where wDE < −1, known as phantom energy, has
also been explored. It violates not just the strong energy condition of Eq.(1.36), but also
the weak energy condition of Eq.(1.37). By applying Eq. (1.22), we can easily observe
that in this model, ρDE increases as the universe expands. Now, consider a flat universe
containing only two components: matter and phantom energy. The scale factor evolves as
described by Eq. (1.38) for t > teq, where teq marks the time when the densities of matter
and phantom energy become equal.

a (t) ≃ a (teq)

[
(1 + wDE)

t

teq
− wDE

] 2
3(1+wDE)

. (1.38)

Eq. (1.38) indicates that the universe diverges at a finite time tBR given by:

tBR =

(
wDE

1 + wDE

)
teq (1.39)

The time tBR is referred to as the Big Rip. The scale factor’s divergence is linked to the
divergence of the phantom energy density, which evolves as:

ρph ∝
[
(1 + wDE)

t

teq
− wDE

]−2

. (1.40)

After discussing the roles of dark matter and dark energy in shaping the universe, it is
essential to consider another significant component of the cosmos: relativistic matter.
This category includes radiation and neutrinos, both of which played a crucial role in the
early universe and continue to influence its evolution. In the early universe, radiation and
neutrinos, as forms of relativistic matter, played a dominant role. During the radiation-
dominated era, radiation, primarily photons, governed the expansion of the universe, with
its energy density scaling as a (t) ∝ t−4. As the universe expanded and cooled, photons
decoupled from matter, leading to the Cosmic Microwave Background (CMB). Neutrinos,
nearly massless particles, decoupled early and became relic particles that still exist today.
Though weakly interacting, neutrinos influenced the formation of cosmic structures and
left imprints on the CMB. As the universe evolved, the energy density of radiation de-
creased faster than matter, leading to the matter-dominated era. Despite their reduced
role today, radiation and neutrinos continue to influence cosmic expansion and structure
formation, providing crucial insights into the universe’s early evolution. And based on
the Planck 2018 Results [14], Ωr ≈ 5× 10−5.
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1.4 wCDM model
The wCDM model is an extension of the standard ΛCDM model, in which the dark energy
equation of state parameter w is treated as a constant, but is allowed to deviate from the
cosmological constant value w = −1. When w ̸= −1, the energy density of dark energy
evolves differently from that of a cosmological constant, potentially becoming more or
less dominant at different epochs.

Beyond this, dynamical dark energy models further generalize the framework by allowing
w to vary with time or redshift. A commonly used example is the CPL (Chevallier–
Polarski–Linder) parameterization [15], in which the equation of state takes the form
w (a) = w0+wa (1− a), capturing possible evolution of dark energy across cosmic history.

12



Chapter 2

Two points statistics

In order to probe LSS in the Universe, the statistical properties of the matter distribu-
tion are of great importance. The two-point correlation functions (2PCF) and the power
spectrum are two of the most widely used statistical tools in cosmology. They provide
a means to quantify the spatial distribution of matter, allowing us to understand the
large-scale structure of the universe and its evolution over time. By studying the two-
point correlation function, we can gain insights into the clustering properties of galaxies,
the nature of dark matter, and the underlying cosmological parameters that govern the
universe’s dynamics.

In Section 2.1, we will discuss the inhomogeneity of the universe and the statistical prop-
erties of density perturbations. We will introduce the concept of the two-point correlation
function and its relation to the power spectrum in Section 2.2. In Section 2.3, we will
explain how power spectrum extract Gaussian information and why we need other tools
to gain non-Gaussian information. Finally, in Section 2.4, we will show the 2D projec-
tion of the 3D power spectrum, the angular power spectrum, and its relation to the 2PCF.

2.1 Inhomogeneity
Although the universe is statistically homogeneous on large scale, observations have shown
that some fluctuations still exist on small scales. One of the most significant evidence is
the CMB, where temperature fluctuations at the level of 10−5 K provides a window into
the early fluctuations of the early universe. The theoretical framework of inflation not
only supports this view but also provides a compelling mechanism to explain the origin
of these initial inhomogeneities, leading to the observed structure formation. We can not
predict the specific location of over- (δ > 0) or underdensities (δ < 0), but instead rely
on their statistical properties.

We will approach the statistical properties using two types of averages: the volume aver-
age and the ensemble average. The ensemble average is a theoretical construct, while the
volume average is a more practical concept used in observations.

13
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For ensemble average, we assume that our universe is just one of an ensemble of an infinite
number of possible universes (realizations of random process) that could have resulted
from random process producing the initial perturbations. Here we use the probability
distribution Prob(γ) to denote the random process. Thus the ensemble average of a
quantity f depending on the initial random process is written as:

⟨f⟩ ≡
∫
dγProb (γ) f (γ) . (2.1)

Here f could be, e.g., the value of ρ (x) at some location x.

However, we can observe only one universe from that ensemble. So, it would be reasonable
that the statistics we get by comparing different parts of the universe should be similar
to the statistics of a given part of the universe over different realizations. In this case,
volume average is more useful:

f̄ ≡ 1

V

∫
V

d3xf (x) . (2.2)

The fields f (x) that satisfy
f̄ = ⟨f⟩ , (2.3)

for an infinite volume V (for f̄) and an arbitrary location x (for ⟨f⟩) are called ergodic.
The equality does not hold for a finite volume V ; the difference is called cosmic variance.
We express the inhomogeneous quantities as the combination of a homogeneous back-
ground value and a perturbation component, representing a deviation from the uniform
background. Thus, the energy density can be written as:

ρ (x, t) = ρ̄ (t) + δρ (x, t) , (2.4)

where ρ̄ is the background density, x is the comoving 3D space coordinate and δρ is the
density perturbation. We could further define the relative perturbation as:

δ (x, t) ≡ ρ (x, t)− ρ̄ (t)

ρ̄ (t)
, (2.5)

where we could easily see that ⟨δ (x, t)⟩ = ⟨ρ (x, t)− ρ̄ (t)⟩ / ⟨ρ̄ (t)⟩ = 0. Thus we can
not use ⟨δ⟩ as a measure of inhomogeneity, instead, we can use the square of δ (in the
following, we will omit t for simplicity), which is necessarily non-negative everywhere:

〈
δ2
〉
=

⟨δρ2⟩
ρ̄2

. (2.6)

However, it only informs us about the magnitude of the inhomogeneity, without provid-
ing any details regarding its shape or size. To gain deeper insights, we introduce the
correlation function ξ. Specifically, we define the 2-point density correlation function as:

ξ (x1,x2) ≡ ⟨δ (x1) δ (x2)⟩ . (2.7)
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The correlation function is positive if the density perturbations at both x1 and x2 are
expected to have the same sign, and negative if there is an overdensity at one point and
an underdensity at the other. Because of statistical homogeneity, ξ (x1,x2) depends only
on the separation r ≡ x2 − x1. Therefore, we can redefine ξ as:

ξ (r) ≡ ⟨δ (x) δ (x+ r)⟩ (2.8)

Due to the property of isotropy, ξ (r) does not depend on direction, behaving in a spher-
ically symmetric manner. As a result, we can express it as:

ξ (r) = ξ (r) . (2.9)

The correlation function is significantly positive when r is smaller than the characteristic
size of an over- or underdense region, but decreases for larger distances.
The correlation function at zero separation gives the variance of the density perturbation:〈

δ2
〉
= ⟨δ (x) δ (x)⟩ = ξ (0) . (2.10)

Also, we could define the correlation function ξ̂ (r) for a single realization as a volume
average:

ξ̂ (r) ≡ 1

V

∫
d3x δ (x) δ (x+ r) . (2.11)

Integrating over r and assuming periodic boundary conditions, we get the integral con-
straint:∫

d3rξ̂ (r) =
1

V

∫
d3rd3x δ (x) δ (x+ r) =

1

V

∫
d3xδ (x)

∫
d3rδ (x+ r) = 0 . (2.12)

As a result, ξ (r) must eventually turn negative, indicating that at a certain distance
from an overdense region, it is more probable to encounter an underdense region. As
the separation increases further, ξ may oscillate around zero, with the amplitude of these
oscillations gradually diminishing.

2.2 Power spectrum of density perturbation
Fourier transform

Usually we will decompose the correlation function into the summation of difference wave-
length by Fourier transform, so the following gives a short review about the properties of
Fourier transform and also the convention we use.

For mathematical convenience, we assume the observable part of the universe lies within
a fiducial cubic box, volume V = L3, with periodic boundary conditions. We can now
expand any function of space f (x) in the following way:

f (x) =
V

(2π)3

∫
f (k) eik·xd3x , (2.13)
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and the inverse Fourier transform is:

f (k) =
1

V

∫
f (x) e−ik·xd3x . (2.14)

The Fourier transform representation of f (x) is derived from its expansion in a Fourier
series [11], where the set of functions

{
eik·x

}
with discrete wave vectors k provides a

complete and orthogonal basis for the expansion. These properties of Fourier series also
extend to the Fourier transform, leading to the expression:∫ (

eik
′·x
)∗

×
(
eik·x

)
d3x =

∫
ei(k−k′)·xd3x = (2π)3 δD (k − k′) , (2.15)

for the orthogonality relation where k, k′ are distinct wave vectors and δD (k − k′) is the
Dirac delta function. The symbol ∗ represents the complex conjugate. This relation holds
true also for Fourier space:∫

ei(x−x′)·kd3k = (2π)3 δD (x− x′) . (2.16)

For the real field f (x), we could easily see from Eq. (2.14) that:

f (−k) = f ∗ (k) . (2.17)

Another key result related to the Fourier transform is the convolution theorem. This
theorem states that the convolution of two functions in real space corresponds to the
Fourier transform of their product in Fourier space. The convolution of two functions or
random continuous density fields, ρ and g, is defined as:

(f ∗ g) (x) =
∫
f (y) g (x− y) d3y , (2.18)

and then the convolution theorem is written as:

(f ∗ g) (x) = V 2

(2π)3

∫
f (k) g (k) eik·xd3k , (2.19)

where usually the volume V is absorbed into the Fourier mode and the convolution the-
orem could be reformulated as:

(f ∗ g) (x) = 1

(2π)3

∫
f (k) g (k) eik·xd3k , (2.20)

where the new Fourier mode f (k) and g (k) on the right hand side are the product of
volume V and the original Fourier counterpart.

Power spectrum

Now we can expand the density perturbation using the integral of Fourier modes:

δ (x) =
V

(2π)3

∫
k

δ (k) eik·xd3k . (2.21)
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Therefore, the two point correlation function can be represented by their corresponding
Fourier modes:

ξ (r) = ⟨δ (x) δ (x+ r)⟩ (2.22)

=
V 2

(2π)6

〈∫
k

δ (k) eik·xd3k

∫
k′
δ (k′) eik

′·(x+r)d3k′
〉

(2.23)

=
V 2

(2π)6
1

V

∫
V

d3x

∫
k

δ (k) eik·xd3k

∫
k′
δ (k′) eik

′·(x+r)d3k′ (2.24)

=
V

(2π)6

∫
V

∫
k

∫
k′
δ (k) δ (k′) ei(k+k′)·xeik

′rd3xd3kd3k′ (2.25)

=
V

(2π)6

∫
k

∫
k′
δ (k) δ (k′) eik

′r (2π)3 δD (k + k′) d3kd3k′ (2.26)

=
V

(2π)3

∫
k′
δ (−k′) δ (k′) eik

′·rd3k′ (2.27)

=
V

(2π)3

∫
k

δ (k) δ∗ (k)eik·rd3k (2.28)

=
V

(2π)3

∫
k

|δ (k)|2 eik·rd3k , (2.29)

where from Eq. (2.23) to Eq. (2.24), we use the concept of volume average to calculate the
ensemble average, then from Eq. (2.25) to Eq. (2.26) we use property of orthogonality of
plane waves. And this gives the Fourier transform of the two point correlation function.
By taking ensemble averages on both sides of Eq. (2.29), we can define the power spectrum
as follows [11]:

P (k) ≡
〈
|δ (k)|2

〉
. (2.30)

Unlike the correlation function, the power spectrum P (k) is positive everywhere. And
from statistical isotropy

ξ (r) = ξ (r) ⇒ P (k) = P (k) . (2.31)

An alternative definition of the power spectrum is given by [9]:

⟨δ∗ (k′) δ (k)⟩ ≡ (2π)3 δD (k − k′)P (k) . (2.32)

From Eq. (2.28) and Eq. (2.32), we could easily see that 2PCF is the inverse Fourier
transform of the power spectrum:

ξ (r) =
V

(2π)3

∫
k

δ (k) δ∗ (k) eik·rd3k

=
V

(2π)3

∫
k

P (k) eik·rd3k .

(2.33)

Using spherical coordinates and doing the angular integrals, we could further simplify
the Eq. (2.33) and the get the relation between the 1D correlation function ξ (r) and 1D
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power spectrum P (k),

ξ (r) =
V

(2π)3

∫
k

P (k) eik·rd3k

=
V

(2π)3

∫ 2π

0

∫ π

0

∫
k

P (k) eikr cos θk2 sin θdφdθdk

=
V

(2π)3
2π

∫ π

0

∫
k

P (k) eikr cos θk2 sin θdφdθdk

= − V

(2π)2

∫ π

0

∫
k

P (k) k2
1

ikr
deikr cos θdk

= − V

(2π)2

∫
k

P (k) k

ir

[
eikr cosπ − eikr cos 0

]
dk

= − V

(2π)2

∫
k

P (k) k

ir
(−2i sin (kr)) dk

=
V

(2π)3

∫
k

P (k)
sin (kr)

kr
4πk2dk

=
V

(2π)3

∫
k

2j0 (kr)P (k) 2πk2dk ,

(2.34)

where j0 (x) is zeroth order spherical Bessel function defined as :

j0 (x) =
sin x

x
. (2.35)

In the small-angle (flat-sky) limit, the spherical symmetry reduces to a two-dimensional
symmetry, and the corresponding Bessel transform becomes a Hankel transform involv-
ing J0. The mathematical expression between two-point correlation function and power
spectrum in 2D flat coordinate could be written as:

ξ (θ) =

∫ ∞

0

ℓdℓ

2π
CℓJ0 (ℓθ) . (2.36)

where J0 is Bessel function of first kind.

2.3 Gaussian and non-Gaussian information
In the later stages of the universe, as structure formation progresses, density perturbations
evolve and become increasingly non-Gaussian due to nonlinear gravitational interactions.
However, understanding the properties of a Gaussian field remains fundamental, as many
early-universe models assume Gaussian initial conditions, and the statistical tools devel-
oped for Gaussian fields provide a crucial foundation. In this subsection, we will explore
the key characteristics of Gaussian fields, which continue to play an important role in
cosmological analysis even in the presence of non-Gaussianity.
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A general Gaussian random field δ0 (x) with vanishing mean is completely specified by
its 2PCF, ⟨δ0 (x1) δ0 (x2)⟩ = ξ (x1 − x2). The expectation value of three fields vanishes:

⟨δ0 (x1) δ0 (x2) δ0 (x3)⟩ = 0 . (2.37)

The expectation value with four fields is non-zero, but completely determined by ξ (r):

⟨δ0 (x1) δ0 (x2) δ0 (x3) δ0 (x4)⟩ =ξ (x1 − x2) ξ (x4 − x3) + ξ (x1 − x3) ξ (x4 − x2)

+ ξ (x1 − x4) ξ (x3 − x2) ,
(2.38)

where the three terms arise from the three distinct possibilities of combining the four fields
into two pairs. The expansion by pairing the fields similarly works for any higher, even
number of fields, and it is known as Wick’s theorem. For the general case, any ensemble
average of products of δ0 can be written in terms of products of ensemble average of pairs
as:

⟨δ0 (x1) . . . δ0 (x2n+1)⟩ = 0 , (2.39)

⟨δ0 (x1) . . . δ0 (x2n)⟩ =
∑

all partitions

∏
pairs(i,j)

⟨δ0 (xi) δ0 (xj)⟩ , (2.40)

where the
∑ ∏

notation indicates a sum over all possible partitions of the set of points
into pairs. Wick’s theorem works in Fourier space as well, the Fourier-space counterpart
of Eq. (2.37) and Eq. (2.38)

⟨δ0 (k1) δ0 (k2) δ0 (k3)⟩ = 0 , (2.41)

⟨δ0 (k1) δ0 (k2) δ (k3) δ (k4)⟩ = (2π)6 δD (k1 + k2) δD (k3 + k4)P (k1)P (k3)

+ (2π)6 δD (k1 + k3) δD (k2 + k4)P (k1)P (k2)

+ (2π)6 δD (k1 + k4) δD (k2 + k3)P (k1)P (k2) .

(2.42)

With Wick’s theorem, it is easy to see that the 2PCF is a full description of Gaussian
information. As the universe evolves, linear perturbation theory is not enough to explain
the growth of structures, some non-linear perturbation theory has to be utilized. In the
regime of standard perturbation theory (SPT), the non-linear field is expanded as:

δm (k) = δ(1) (k) + δ(2) (k) + · · ·+ δ(n) (k) , (2.43)

where the source terms for δ(n) involve n power of the linear fields, and so each term
in series Eq. (2.43) is smaller than the previous one. Since δ(1) is a Gaussian density
field, then δm is no longer a Gaussian field with non-zero additional terms included. The
coupling between the nth order and linear density field is given by:

δ(n) (k) =

[
n∏

i=1

∫
d3ki

(2π)3

]
(2π)3 δD

(
k −

n∑
i=1

ki

)
× Fn (k1, · · · ,kn) δ

(1) (k1) · · · δ(1) (kn) ,

(2.44)
where Fn (k1, · · · ,kn) is the kernel connecting n linear density field with different wave-
length. The important effect of non-linear evolution is that statistics involving an odd
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number of matter density fields no longer vanish. Using only two terms in Eq. (2.43),
then the expansion of bispectrum could be written as:

⟨δm(k1)δm(k2)δm(k3)⟩ =
〈(
δ(1)(k1) + δ(2)(k1)

) (
δ(1)(k2) + δ(2)(k2)

) (
δ(1)(k3) + δ(2)(k3)

)〉
(2.45)

=
〈
δ(1)(k1)δ

(1)(k2)δ
(1)(k3)

〉
+
〈
δ(1)(k1)δ

(1)(k2)δ
(2)(k3)

〉
+
〈
δ(1)(k1)δ

(2)(k2)δ
(1)(k3)

〉
+
〈
δ(1)(k1)δ

(2)(k2)δ
(2)(k3)

〉
+
〈
δ(2)(k1)δ

(1)(k2)δ
(1)(k3)

〉
+
〈
δ(2)(k1)δ

(1)(k2)δ
(2)(k3)

〉
+
〈
δ(2)(k1)δ

(2)(k2)δ
(1)(k3)

〉
+
〈
δ(2)(k1)δ

(2)(k2)δ
(2)(k3)

〉
, (2.46)

where the first term in Eq. (2.46) vanishes according to Wick’s theorem, the second,
third and forth terms are the leading contributions to the bispectrum, and the rest are
higher order terms whose contribution is less. Since the three leading terms are cyclic
permutation, we will choose the first one to do further calculation.〈

δ(1)(k1)δ
(1)(k2)δ

(2)(k3)
〉
=

〈
δ(1)(k1)δ

(1)(k2)

∫
d3q

(2π)3

∫
d3l

(2π)3

(2π)3 δD (k3 − q − l)F2 (q, l) δ
(1)(q)δ(1)(l)

〉
(2.47)

=

∫
d3q

(2π)3

∫
d3lδD (k3 − q − l)

F2 (q, l)
〈
δ(1)(k1)δ

(1)(k2)δ
(1)(q)δ(1)(l)

〉
(2.48)

=

∫
d3q

(2π)3

∫
d3lδD (k3 − q − l)F2 (q, l)

×
(
(2π)6 δD (k1 + k2) δD (q + l)P (k1)P (q)

)
+ (2π)6 δD (k1 + q) δD (k2 + l)P (k1)P (k2)

+ (2π)6 δD (k1 + l) δD (k2 + q)P (k1)P (k2)) , (2.49)

where we use the expansion relation with F2 kernel, shown in Eq. (2.50), from Eq. (2.47)
to Eq. (2.48), and we utilize Wick’s theorem from Eq. (2.48) to Eq. (2.49).

F2 (k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k1
2k2

2 +
1

2
k1 · k2

(
k1
k2

+
k2
k1

)
. (2.50)

As for Eq. (2.49), we could further simplify it by integrating over q and l. Then for the
first term in Eq. (2.49), we have q = −l, which makes F2 (l,−l) vanish. Integrating the
second and third term, we finally get:〈

δ(1)(k1)δ
(1)(k2)δ

(2)(k3)
〉
= (2π)3δ

(3)
D (k1 + k2 + k3)2F2(k1,k2)PL(k1)PL(k2) , (2.51)

where PL refers the linear power spectrum. In the end, Eq. (2.45) is expressed as:

⟨δm(k1, η)δm(k2, η)δm(k3, η)⟩ = (2π)3δ
(3)
D (k1 + k2 + k3)

× [2F2(k1,k2)PL(k1, η)PL(k2, η) + 2 perm.] ,
(2.52)
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where “perm” indicates cyclic permutation. The above derivation and equation show the
existence of non-Gaussian matter density field mathematically. This highlights the limi-
tations of Gaussian-based statistics, and motivates the use of higher-order estimators and
nonlinear summary statistics to capture the full cosmological information content.

2.4 Angular power spectrum
Instead of r, the angular separation vector θ (also expressed as (θ, ϕ)) is typically used
as the displacement vector for correlation functions in actual observations conducted on
the celestial sphere. In analogy with the Fourier expansion in 3D space, we separate out
the contributions of different angular scales by doing a multipole expansion,

δ (θ, ϕ) =
∑
ℓ≥0

ℓ∑
m=−ℓ

aℓmYℓm (θ, ϕ) , (2.53)

where ℓ is the multipole number and it takes only discrete integers, and m represents dif-
ferent phases with given separation scales ℓ. Functions Yℓm (θ, ϕ) are spherical harmonics,
which form an orthonormal set of functions over the sphere, so that we can calculate the
multipole coefficients aℓm from

aℓm =

∫ π

0

∫ 2π

0

Y ∗
ℓm (θ, ϕ) δ (θ, ϕ) dΩ . (2.54)

Spherical harmonics functions are related to the associated Legendre functions Pm
ℓ (x) by

Yℓm (θ, ϕ) = (−1)m

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ) eimϕ . (2.55)

Thus, the θ-dependence is in Pm
ℓ (cos θ) and the ϕ-dependence is in eimϕ. The functions

Pm
ℓ are real and

Yℓ,−m = (−1)m Y ∗
ℓ,m , (2.56)

so that

Yℓ0 =

√
2ℓ+ 1

4π
Pℓ (cos θ) , (2.57)

is also real. The functions Pℓ ≡ P 0
ℓ are called Legendre polynomials. Summing over the

m corresponding to the same multipole number ℓ gives the addition theorem [16],∑
m

Y ∗
ℓm (θ′, ϕ′)Yℓm (θ, ϕ) =

2ℓ+ 1

4π
Pℓ (cosϑ) , (2.58)

where ϑ is the angle between n̂ = (θ, ϕ) and n̂′ = (θ′, ϕ′), i.e., n̂ · n̂′ = cosϑ.

The quantity we want to calculate from theory is the variance
〈
|aℓm|2

〉
to get a prediction

for a typical size of the aℓm. From statistical isotropy, it also follows that these expectation

21



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

values depend only on ℓ and not on m. The ℓ values are associated with the angular scale
of the anisotropy pattern, while the m values pertain to its “orientation” or “pattern”.
In order to get the scale information, we could calculate the mean value of

〈
|aℓm|2

〉
at

different orientations with given scale,

Cℓ ≡
〈
|aℓm|2

〉
=

1

2ℓ+ 1

∑
m

〈
|aℓm|2

〉
, (2.59)

and altogether we have
⟨a∗ℓmaℓ′m′⟩ ≡ δℓℓ′δmm′Cℓ , (2.60)

where δmm′ and δℓℓ′ are Kronecker delta functions, and Cℓ is called angular power spec-
trum. It is analogous to the power spectrum of density perturbations.

Additionally, the definition of angular correlation function could be derived using angular
power spectrum, similarly as the power spectrum and 2 point correlation function in 3D
space:

ξ (ϑ) = ⟨δ (θ1) δ (θ2)⟩ (2.61)
=
∑
ℓm

∑
ℓprimem′

⟨a∗ℓmalprimem′⟩Y ∗
ℓm (θ1)Yℓprimem′ (θ2) (2.62)

=
∑
ℓ

Cℓ

∑
m

Y ∗
ℓm (θ1)Yℓprimem′ (θ2) (2.63)

=
∑
ℓ

2ℓ+ 1

4π
CℓPℓ (cosϑ) , (2.64)

where we expand density perturbation using spherical harmonics in Eq. (2.62), then use
the definition of angular power spectrum to simplify the summation in Eq. (2.63) and
finally apply addition theorem in Eq. (2.64) to get the final mathematical relation between
angular power spectrum and angular correlation function.
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Chapter 3

Weak lensing cosmology

All observed light from distant galaxies is bent because of the inhomogeneity caused
by the ubiquitous density fluctuations at large scales according to the theory of general
relativity. These fluctuations create a tidal gravitational field that causes light bundles to
to deflected differentially. This is called gravitational lensing effect. As a result, images
of light-emitting galaxies that we observe are distorted. The direction and amount of
distortion is directly related to the size and shape of the matter distribution projected
along the line of sight, providing a power tool for us to study the matter distribution.
In this chapter, we are going to introduce the concept and formalism of gravitational
weak lensing. In Section 3.1, we will introduce some general concepts about weak lensing.
In Section 3.2, we will show the mathematical formalism of weak gravitational lensing,
and how convergence and shear are defined. In Section 3.3, we will present the physical
meaning of convergence field.

3.1 Gravitational lensing basic
Gravitational lensing effect occurs when the gravitational field of a massive object, such
as a galaxy or galaxy clusters, bends the path of light coming from a more distant source.
This phenomenon is a direct consequence of Einstein’s General Relativity, which predicts
that massive objects warp the spacetime around them, causing light to follow curved
trajectories. Fig. 3.1 illustrates a lensing system with only one source and lensing object,
where it shows how a lensed image appears at a different angular position in the sky
compared to their actual position.
Besides the shift of position of lensed image on the sky, the shape and size of the source
would be changed as well, which is called distortion. Distortion elongates the images in
one direction and compress it in another direction and also add some shear on the original
shape. Meanwhile, the observed images are magnified as well due to the distortion effect.
In next subsection, we will show the distortion effect mathematically. Based on the
magnitude of distortion, gravitational lensing is divided into strong lensing, weak lensing
and microlensing.

• Strong lensing: is a gravitational lensing effect that is strong enough to produce
multiple images, arcs, or Einstein rings. For this to occur, the projected lens mass
must be greater than the critical density, Σcr.
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Figure 3.1: Lensing system illustration. Point I, S and O denote deflected image, source
and observer. In the bottom, DS, Dds and Dd refer the distance between source and
observer, source and lens, lens and observer. Light emitted from a source located at
a distance η from the central optical axis and traveling parallel to it gets deflected by
an angle α before reaching the observer. The resulting image appears at an angular
separation θ from the optical axis in the sky, which differs from the actual separation of
the source, β. Image from [17].
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• Microlensing: occurs when the lensing object is much smaller in mass, such as
a star or a planet. In microlensing, the lens does not produce multiple distinct
images due to the small angular separation, but it temporarily magnifies the light
from a background source as the lens passes between the observer and the source.
Microlensing is often used to detect objects that emit little or no light themselves,
such as exoplanets, brown dwarfs, or black holes.

• Weak lensing: takes place when the gravitational field of the lensing object is
not strong enough to produce multiple images or significant arcs but still distorts
the shapes of background galaxies slightly. These distortions are so small that they
cannot be easily detected in individual galaxies. Instead, the effect is measured
statistically by analyzing the collective distortions of many galaxies across a wide
area of the sky.

Before going to the mathematical description of gravitational lensing, we should remember
that Fig. 3.1 is just a schematic illustration of effect of only one lens on the source galaxy.
But in reality, light emitted from the source experiences a lot of lenses, which results in
a continuous deflection when the light travels to observers. And then the accumulated
result contains the bending from all the matter along the propagation of light.

3.2 Lensing formalism
In order to quantify gravitational lensing, it is necessary to account for light propagation
in an inhomogeneous universe. For a general metric that represents an expanding universe
with first-order perturbations, the line element ds is expressed as:

ds2 = (1 + 2Ψ) dt2 − a2 (t) (1− 2Φ) dl2 , (3.1)

where spatial part of the metric is given by the comoving coordinate l, two Bardeen
gravitational potentials Ψ and Φ are used to describe weak field, Ψ,Φ ≪ 1. The potential
of a lens with mass M and radius R can be approximated by

GM

R
=

1

2

RS

R
, (3.2)

where RS is the Schwarzschild radius. The weak-field condition, Eq. (3.2), is satisfied
for the majority of mass distributions, except for extremely compact objects where the
size R is nearly equal to their Schwarzschild radius. In General Relativity, and in the
absence of anisotropic stress which is the case on large scales, the two potentials are
equal, Φ = Ψ. The density contrast is related to gravitational potential via Poisson
equation, representing in comoving coordinate as

∇2Φ = 4πGa2ρ̄δ . (3.3)

Photons propagating on the null geodesics gives a vanishing line element ds. Then ac-
cording to Eq. (3.1), we could get:

t =

∫
(1− 2Φ) dr , (3.4)
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where the integral is along the light path in physical or proper coordinate dr. Similar
to geometrical optics, the potential functions like a medium with a refractive index of
n = 1− 2Φ (where Φ < 0), altering the direction of the light’s trajectory. Using Fermat’s
principle by setting δt = 0, we get Euler-Lagrange equation for the refractive index:

d

dr

(
∂n

∂r′

)
− ∂n

∂r
= 0 . (3.5)

Integrating the equations along the light path gives the total deflection angle α̂ defined
as the difference between the directions of emitted and received light rays:

α̂ = −2

∫
∇p

⊥Φdr , (3.6)

where the gradient ∇p
⊥ is taken perpendicular to the light path, with respect to the physi-

cal coordinates. With this, we could quantify the connection between light deflection and
gravitational potential on cosmological scale. To describe how rays within an infinites-
imally narrow light bundle propagate, we consider the separation between two nearby
geodesics, which is governed by geodesic deviation equation. In a homogeneous FLRW
Universe, the transverse comoving separation x0 between two light rays, as a function of
χ from observer, is proportional to the comoving angular distance:

x0 (χ) = fK (χ)θ , (3.7)

where the separation vector x0 is seen by the observer under the angle θ. [18]. While
in perturbed Universe, the light is deflected by an amount dα̂ = −2∇⊥Φ (x, χ′) dχ′ in
the presence of potential Φ at distance χ′ from the observer (expressed in comoving
coordinate). When deflector exits, the change in the separation vector at the source’s
comoving distance χ is given by dx = fK (χ− χ′) dα̂ (see Fig. 3.2 for an illustration).
The total separation is determined by the integrating along the line of sight over χ′.
Lensing deflection changes the path of both light rays, and we denote the fiducial ray
with the superscript (0). Then the separation at distance χ between two light rays is
observed angular diameter distance minus the defected angle multiplied by the traveled
distance:

x (χ) = fK (χ)θ − 2

∫ χ

0

dχ′fK (χ− χ′)
[
∇⊥Φ (x, χ′)−∇⊥Φ

(0) (χ′)
]
. (3.8)

Without lensing, the observer would see the separation vector x under an angle β =
x (χ) /fK (χ). The difference between the apparent angle θ and β represents the total,
scaled deflection angle α, which defines the lens equation:

β = θ −α , (3.9)

with
α = 2

∫ χ

0

dχ′fK (χ− χ′)

fK (χ)

[
∇⊥Φ (x, χ′)−∇⊥Φ

(0) (χ′)
]
. (3.10)

However, the integral of Eq. (3.10) over the actual deflected light path might be com-
plicated. Since the typical deflection angles are on the order of seconds or smaller [20],
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χ′

~θ

~x(χ)

d~x(χ)
∇⊥

φ(χ
′ )

d~α

~β

χ

χ− χ′

Figure 3.2: Two light rays (represented by red solid lines) are shown converging toward
an observer on the left. The rays are separated by a transverse comoving distance x (χ),
which changes with the distance ξ from the observer. A deflector located at distance ξ′
disturbs the geodesics in proportion to the transverse gradient ∇⊥ϕ of the potential. The
dashed lines represent the apparent paths of the light rays, which appear to converge at
an angle θ to the observer. The dotted lines illustrate the undisturbed geodesics, defining
the angle β, at which the unperturbed transverse comoving distance x is observed. Image
from [19].

the integration path could be approximated by an unperturbed straight light path in the
absence of lensing, i.e. directly over θ instead of β. This approximation is known as Born
approximation, which greatly simplifies the calculation by neglecting higher-order correc-
tions. The Born approximation is valid in the weak lensing regime, where the deflections
are small, and the light rays do not deviate significantly from their original trajectories.
However, for strong lensing or highly nonlinear structures, corrections beyond the Born
approximation may be necessary to account for the cumulative effects of multiple deflec-
tions.

We linearize the lens equation Eq. (3.9) and introduce the (inverse) amplification matrix,
defined as the Jacobian β = x (χ) /fK (χ), which describes the linear relationship between
the lensed (image) coordinates θ and the unlensed (source) coordinates β,

Aij =
∂βi
∂θj

= δij −
∂αi

∂θj

= δij − 2

∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)

∂2

∂xi∂xj
Φ (fK (χ′)θ, χ′) ,

(3.11)

where the second term in Eq. (3.10) drops out because it is independent on θ. The
second term in Eq. (3.11) represents the integral of the gradient of the three-dimensional
gravitational potential in the transverse direction, taken along the line of sight. This
results in the gradient of the projected gravitational potential in two-dimensional space.
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Thus, the deflection angle can be written as the gradient of a 2D potential, called the
lensing potential ψ,

Aij = δij − ∂i∂jψ , (3.12)
where the partial derivatives are understood with respect to θ and the expression of ψ is
given as

ψ (θ, χ) = 2

∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)
Φ (fK (χ′)θ, χ′) . (3.13)

The symmetric matrix A is expressed in terms of the scalar convergence κ and the two-
component spin-two shear, γ = (γ1, γ2) as follows:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (3.14)

where the convergence κ and shear γ are defined as the second derivatives of the lensing
potential:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2

⊥ψ , (3.15)

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ , (3.16)

γ2 = ∂1∂2ψ . (3.17)

Convergence, being the diagonal component of the matrix, represents an isotropic enlarge-
ment or reduction of the observed size of a source image. In contrast, shear, which is the
trace-free part, describes anisotropic stretching, transforming a circular light distribution
into an elliptical one. In the case of cosmological lensing by large-scale structures, images
experience very weak lensing, with κ and γ values being only a few percent or smaller.
Each source corresponds to a single, unique image, with no occurrence of multiple images,
and the matrix A is invertible. Based on Eq. (3.11), we could see that:

δθ = A−1δβ , (3.18)

where A−1 is the inverse of the Jacobian matrix, describing the local mapping of the
source light distribution to image coordinates, which is represented as:

A−1 =
1

det (A)

(
1− κ+ γ1 γ2

γ2 1− κ− γ1

)
, (3.19)

where det (A) = (1− κ)2 − γ2, with γ2 = γ21 + γ22 , is the Jacobi determinant. Mathemat-
ically, shear is also written as a complex number

γ = γ1 + iγ2 = |γ| exp (2iφ) , (3.20)

where γ is the modulus of the shear and φ is the orientation angle of the shear. The
prefactor in Eq. (3.19) shows that the solid angle covered by the image differs from the
solid angle subtended by the source by the magnification factor

µ =
1

detA
=

1

(1− κ)2 − γ2
≈ 1 + 2κ , (3.21)

28



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

where the final approximation is a first-order Taylor expansion. Therefore, in the weak
lensing regime, the magnification of an image is primarily governed by the convergence κ
(to first-order in a Taylor expansion), rather than by the shear. When κ > 0, the observed
image is magnified (shown in Fig. 3.3), whereas when κ < 0, the observed image appears
smaller than the source image. Since κ only affects the size of the image rather than the
shape of the source, we could factor out (1− κ) from Eq. (3.14). Cosmic shear is based
on the measurement of galaxy shapes and the real observable is not shear but reduced
shear:

g =
γ

1− κ
. (3.22)

 

Figure 3.3: Illustration of magnification. This is the case of convergence that is greater
than zero. Orange objects represent the foreground galaxies and purple circle is the source
galaxy. Solid line shows the real light path and dashed line indicates the observed image.

Regarding the effect of shear on observations, Eq. (3.19) shows that when only the γ1 term
is present (γ2 = 0), a circular source image is stretched in one direction and compressed
in the perpendicular direction. However, when γ1 = 0 and γ2 ̸= 0, the source image is
rotated and stretched within this coordinate system, as depicted in Fig. 3.4.

The total distortion effects, with convergence and shear, described by Eq. (3.14) are
illustrated schematically in Fig. 3.5, where we demonstrate how gravitational lensing
distorts the image of a source galaxy, which is assumed to have an intrinsically circular
shape when projected onto the sky.

3.3 Projected overdensity
Since convergence κ is linked to the lensing potential ψ through a 2D Poisson equation,
Eq. (3.15), it can be understood as a (projected) surface density. To prove it mathemat-
ically, let’s start with the 2D Poisson equation, ∇2

⊥ψ. If we replace the perpendicular
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Figure 3.4: The orientation of the shear-induced ellipses in gravitational lensing, repre-
sented by the Cartesian components γ1 and γ2. As the polar angle φ varies from 0 to 2π,
the orientation of the shear ellipses rotates by π, illustrating the directional stretching
and compression effects on background source images due to the lensing shear. Image
from [19].

 

Figure 3.5: Total lensing distortion effects: For a galaxy with an intrinsically circular
shape, convergence will isotropically increase its size, while shear will distort it into an
elliptical shape, introducing anisotropy. Image adapted from [17].
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Laplacian ∇2
⊥ with the complete Laplacian (in comoving coordinate),

∇2 = ∇2
⊥ +

∂2

∂χ2
. (3.23)

We could insert Eq. (3.23) into Eq. (3.15), resulting in

κ (θ, χ) =
1

2

(
∇2 − ∂2

∂χ2

)
ψ (3.24)

=

∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)
∇2Φ (fK (χ′)θ, χ′) (3.25)

−
∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)

∂2

∂χ2
Φ (fK (χ′)θ, χ′) . (3.26)

As the positive and negative contributions approximately cancel each other out when
integrated along the line of sight, we have the integral, Eq. (3.26), equal to zero∫

∂2Φ

∂χ2
dχ =

∂Φ

∂χ
|end points = 0 . (3.27)

Thus, the convergence κ could be formulated using the density contrast by taking Poisson
equation Eq. (3.3) into Eq. (3.25):

κ (θ, χ) =

∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)
∇2Φ (fK (χ′)θ, χ′)

= 4πG

∫ χ

0

dχ′fK (χ− χ′) fK (χ′)

fK (χ)
a2ρ̄δ (fK (χ′)θ, χ′) .

(3.28)

To deal with ρ̄ in above equation, we utilize first Friedmann equation:

ρ̄ (t) = Ωm (t) ρcrit (t) = Ωm (t)
3H2 (t)

8πG

= Ωm,0
3H0

2

8πG
a−3 (t) ,

(3.29)

whereH0 and Ωm,0 is the present value of Hubble parameter and matter density parameter.
Therefore, the equation connecting the 2D surface-mass density and 3D matter density
contrast is

κ (θ, χ) =
3H0

2Ωm,0

2

∫ χ

0

dχ′

a (χ′)

fK (χ− χ′) fK (χ′)

fK (χ)
δ (fK (χ′)θ, χ′) . (3.30)

This formulation represents the projection of the density at position χ to the observers
along comoving coordinates, influenced by geometrical factors related to the distances
between the source, deflector, and observer. The mean convergence from a population of
source galaxies is calculated by weighting the above expression with the galaxy probability
distribution in comoving distance, n (χ) dχ,

κ (θ) =

∫ χlim

0

dχn (χ)κ (θ, χ) , (3.31)
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The integral extends out to the limiting comoving distance χlim of galaxy sample. The
physical meaning of this equation indicates all the matter density contrast at position θ
with distance [0, χlim] to the observer are projected to that point. By inserting Eq. (3.30)
into Eq. (3.31) and interchanging the integral order, we get the following expression,

κ (θ) =
3H0

2Ωm,0

2

∫ χlim

0

dχ

a (χ)
q (χ) fK (χ) δ (fK (χ)θ, χ) , (3.32)

where q (χ) is lens efficiency, defined as

q (χ) =

∫ χlim

χ

dχ′n (χ′)
fK (χ′ − χ)

fK (χ′)
. (3.33)

The lens efficiency function q (χ) describes how effective a matter overdensity at comoving
distance χ is at lensing the background galaxies. It weights the contribution of matter at
different distances to the observed convergence κ (θ). Intuitively, if the mass distribution
is closer to the observer, it has less lensing effect while if it’s closer to the background
galaxies, it has a stronger lensing effect. Zero efficiency represents the matter is beyond
the source galaxy.

3.4 Shear measurement
The eigenvalues of the inverse Jacobi matrix, Eq. (3.19), are

λ± =
1− κ± λ

detA
=

1

1− κ∓ γ
. (3.34)

A hypothetical circular source, when subjected to weak gravitational lensing, is distorted
into an ellipse with semi-major and semi-minor axes, denoted as a and b, which correspond
to the proportionality of the eigenvalues λ±. By the common definition, the ellipticity ε
of such an image is

ε ≡ a− b

a+ b
=
λ+ − λ−
λ+ + λ−

=
γ

1− κ
, (3.35)

which just the reduced shear. In the cases of weak lensing where κ≪ 1, ε = g ≈ γ.

In observations of weak lensing, however, the sources are usually not circular but have an
inherent source elliptical shape, εS. Cosmic shear modifies this ellipticity as a function
of the complex reduced shear. Assuming no further distortions arise from observational
systematic errors, the relationship between the observed ellipticity, ε and the source el-
lipticity, εS is given by [21],

ε =
εS + g

1 + g∗εS
, (3.36)

where the asterisk “*” denotes complex conjugation. And also in weak lensing regime,
this relation is approximated by

ε ≈ εS + g , (3.37)

32



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

When the intrinsic ellipticity of galaxies has no preferred orientation, the expectation value
of εS becomes zeros, ⟨εS⟩ = 0. As a result, the observed ellipticity serves an unbiased
estimator of the reduced shear, with

⟨ε⟩ = g . (3.38)

3.5 Kaiser-Squires relation
In real observations, convergence cannot be observed since we have no way to know the
intrinsic size and then compare the magnification with the observed one. The only thing
we can observe is the shape of the field. Since both convergence and shear are the second
order derivatives with respect to the lensing potential, the relation between them must
exist. And this relation is called, Kaiser-Squires relation [22]. And the mathematical
expression is given by [23]:

γ̃ (ℓ) =
(ℓ1 + iℓ2)

2

ℓ2
κ̃ (ℓ) = e2iβκ̃ (ℓ) . (3.39)

In the case of full sky maps, we have to use the spherical harmonics to represent the
convergence and shear. Since convergence maps are scalar fields, we could use the scalar
spherical harmonics to represent them, which could be expressed as:

κ =
1

2
∇2ψ

=
1

2
∇2
∑
ℓ,m

ψℓ,mYℓ,m

=
1

2

∑
ℓ,m

−ℓ (ℓ+ 1)ψℓ,mYℓ,m ,

(3.40)

where we used the relation ∇2Yℓ,m = −ℓ (ℓ+ 1)Yℓ,m. The shear is a spin-2 field, so we
could use the spin-2 spherical harmonics to represent it. The shear could be expressed as:

γ = γ1 + iγ2

= ∂1∂1ψ − ∂2∂2ψ + 2i∂1∂2ψ

=
1

2
ð̄ð̄ψ

=
1

2
ð̄ð̄
∑
ℓ,m

ψℓ,m 2Yℓ,m

=
1

2

∑
ℓ,m

√
ℓ (ℓ+ 2) (ℓ+ 1) (ℓ− 1)ψℓ,mYℓ,m ,

(3.41)

where ð̄ is the differential operator used to lower the spin weight, and we have used
the relation ð̄ (sYℓ,m) = −

√
(ℓ+ s) (ℓ− s+ 1)s−1Yℓ,m and ψℓ,m are the coefficients under

spherical harmonics expansion at the basis of Yℓ,m. For further derivation, we could see in
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Appendix D. Joining Eq. (3.40) and Eq. (3.41) into Eq. (3.39), we could get the relation
between the convergence and shear in spherical harmonics representation:

γℓ,m = −

√
(ℓ+ 2) (ℓ− 1)

ℓ (ℓ+ 1)
κℓ,m . (3.42)

3.6 E- and B-modes
We can define a vector field u as the gradient of the ’potential’ κ, u = ∇κ. Then, the
curl of this gradient vanishes since ∇×∇κ = 0. This motivates the decomposition of the
shear fields into E-mode (gradient-like) and B-mode (curl-like) components:

• E-mode: are associated with the convergence field κ and represent the true lensing
signal caused by mass fluctuations

• B-mode: correspond to a curl component and should vanish for pure gravitational
lensing under standard assumptions (no systematic effects)

Therefore, the detection of nonzero b-modes can signal the presence of systematic errors
in the data, such as imperfect shape measurements, intrinsic alignments or residual PSF
effects. Mathematically, the shear field γ can be expressed in terms of E- and B-modes
as:

γ = ∇2ϕE + i∇2ϕB , (3.43)
where ϕE and ϕB are scalar potentials for E- and B-modes respectively.
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Chapter 4

Scattering transform

In cosmology, understanding the non-Gaussian information embedded in cosmological
fields is crucial for probing the underlying physics. However, traditional analytical ap-
proaches, like perturbation theory to derive higher order N -point correlation functions,
often struggle to capture this information due to their modeling complexity and compu-
tational challenges. On the other hand, machine learning techniques like convolutional
neural networks (CNNs) have shown promise in extracting non-Gaussian features but
require extensive training and large datasets, which can be resource-intensive and less
interpretable.

The scattering transform [24] offers a compelling alternative. It provides a framework
that bridges the gap between analytical methods and machine learning by extracting
hierarchical, interpretable features without the need for training. By leveraging wavelet
transforms and non-linear operations, the scattering transform captures non-Gaussian
information in a computationally efficient and robust manner. This makes it particularly
well-suited for cosmological applications, where both interpretability and precision are
essential.

4.1 Wavelet transform
Wavelet transform: Bridging Scales and Features

The wavelet transform is a powerful mathematical tool that bridges the gap between
spatial and frequency domains, offering a localized analysis of signals. Unlike the Fourier
transform, which provides global frequency information, the wavelet transform captures
both spatial and frequency characteristics, making it particularly useful for analyzing
non-stationary signals. In the context of cosmology, where structures exist across a wide
range of scales, the wavelet transform serves as a foundation for extracting hierarchical
features and understanding the multi-scale nature of cosmological fields.

Before delving into the scattering transform, which builds upon the wavelet transform,
let us revisit the concepts of the power spectrum to establish a broader context and gain
deeper intuition.
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4.1.1 Extension of power spectrum

In Eq. (2.32), we defined the power spectrum as P (k) ≡
〈
Ĩ (k) Ĩ (−k)

〉
, where Ĩ here

could be any cosmological field, such as convergence field or shear field, and the tilde
denotes Fourier space. It emphasizes the strength of the clustering at separation ∝ 1

k
in

Fourier space. And through the relation between two-point correlation function and power
spectrum, we could see that we are using a planar wave-like kernel to do the convolution,
where these kernels start from minus infinity to plus infinity, shown in Fig. 4.1. This kind
of kernel is a good way to decompose signals into different frequencies and we can get the
amplitude of the signal at each frequency.

(a) Low Frequency Kernel (b) High Frequency Kernel

Figure 4.1: Fourier transform kernels with different frequency

In some cases, we cannot always get the amplitude at a single frequency but the average
value over a frequency bin. Then, the binned power spectrum could be expressed by
utilizing a window function:

Pbinned (k) ≡
∫
P (k′)w (k′) dk′ ∝

〈
|I (r) ⋆ ψk (r)|2

〉
, (4.1)

where w (k) is the binning window function in Fourier space, and the convolution kernel
ψk whose Fourier counterpart is defined by ψ̃k = w1/2 (k), with the tilde denoting Fourier
transform. The angular bracket refers to the spatial average of all position r and “⋆”
represents convolution. We will further discuss this in Section 4.2.5. The comparison
between the Fourier kernel and the localized kernel can be seen in Fig. 4.2.

By using localized kernel, we could interpret the operation in the following way: the
convolution selects fluctuations and features around a scale, and then by taking modulus,
we could convert the selected fluctuations into their local strength, finally, the average
measures the overall intensity around this scale.

4.1.2 Formalism
Conceptually, the scattering transform is a sequence of operations that could be taken
hierarchically:
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Figure 4.2: Comparison between Fourier kernel and localized kernel. Fourier kernels
contain all information about frequency space but no information from real space, while
localized kernels contain information in both real and Fourier space. Image from [25].

1. Wavelet Convolution: Use localized oscillating wave as kernels to do convolution on
cosmological fields.

2. Modulus: Convert the selected fluctuations (clusterings) into their local strength.

3. Average: Calculate the spatial average of the convolved field to get the fluctuation
level around that scale.

In−1 → In ≡
∣∣In−1 ⋆ ψ

j
∣∣ (scattering operation) , (4.2)

Sn ≡ ⟨In⟩ , (4.3)

where ψj stands for a wavelet indexed by j, its logarithmic scale. When the dimension
of the input field I (x) is higher than 1, we should add another parameter, l, to describe
the orientation of the wavelet kernel.

Fig. 4.3 shows the successive applications of the scattering transform method, which
forms a hierarchy structure, with wavelets connecting different layers and convolved fields
In (x) as nodes. Each In represents the intensity map at a specific scale derived from the
previous-order field In−1, resembling another convolution on that field. The averaging
operation at each node is similar to the average pooling operation in convolutional neural
networks. The 0th-, 1st-, and 2nd-order scattering coefficients can be explicitly expressed
as:

S0 ≡ ⟨I0⟩ , (4.4)

S1 (j1, l1) ≡
〈
Ij1,l11

〉
=
〈∣∣I0 ⋆ ψj1,l1

∣∣〉 , (4.5)

S2 (j1, l1, j2, l2) ≡
〈
Ij1,l1,j2,l22

〉
=
〈∣∣∣∣I0 ⋆ ψj1,l1

∣∣ ⋆ ψj2,l2
∣∣〉 , (4.6)
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Figure 4.3: Illustration of hierarchy structure of scattering transform. The orange ar-
row means the scattering operation, which consists of wavelet convolution and pixel-wise
modulus, and the blue arrow means the spatial average. Here we only plot two layers of
convolution for illustration.
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where the indices j and l mean the scale the orientation of the wavelet filter as mentioned
before.

Number of scattering coefficients

The number of scattering coefficients depends on the number of wavelet filters used. These
filters are defined over a range of logarithmic scales, ηj, where Jmin ≤ j ≤ Jmax and η
represents the wavelet dilation parameter. In this project, we adopt dyadic scaling (
η = 2) and set Jmin = 1. For simplicity, J is used to denote Jmax. The signal length
must not exceed the maximum wavelet filter scale, 2j. With J scale options for each
wavelet, the n-th order of convolution generates Jn possible combinations, though only
a subset contains meaningful information. Since with higher and higher scale parameter
j, the wavelet filter covers more and more areas in real space. This means that if we
perform a wavelet convolution with a smaller filter compared to previous one, we are doing
convolution inside previous convolved field, and this does not take new area into account,
which could get any new information. Therefore, in order to get new information after
each order of convolution, we have to choose wavelet kernels that are larger than previous
ones. As a result, only combinations with j2 > j1 are important, which significantly
reduced the number of informative coefficients by a factor of 2n−1 in n-th order. Thus,
the number of useful scattering coefficients at each order is:

0th order : 1 coefficient.
1st order : J coefficients.
2nd order : J (J − 1) /2 coefficients.

Since J represents the logarithm of the dynamic range of scales in the field, the number of
scattering coefficients grows slowly as the field size increases. This results in a relatively
compact set of descriptors.

Similar to power spectrum, the scattering transform method could also be applied to
higher dimensional data, such as images or 3D physical fields. The only thing that we
need to change is the parameter space, where we not only use scale parameter j, but also
the orientation parameter l. As a sequence, all scale indices should be replaced by that
of oriented scales: j → j, l. The angular size (J) and angular sampling rate (L) remain a
free choice. For example, for the two-dimension case, one could probe L orientations by
using angular sampling rate π/L, whose position angles are πl/L, with 0 ≤ l < L, shown
in Fig. 4.4. Compared to 1D case, there are Ln times more coefficients at n-th order.
Fortunately, these coefficients could be further reduced.

Reduction of orientations

When dealing with isotropic fields, we could simply average the scattering coefficients over
all orientation indices, which reduces the number of scattering coefficients by a factor of
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j = 4, = 0 j = 4, = 1 j = 4, = 2 j = 4, = 3

j = 5, = 0 j = 5, = 1 j = 5, = 2 j = 5, = 3

j = 6, = 0 j = 6, = 1 j = 6, = 2 j = 6, = 3

j = 7, = 0 j = 7, = 1 j = 7, = 2 j = 7, = 3

Wavelets for scales j and orientation 

Figure 4.4: Wavelets for each scales j and orientations l used (J = 8 and L = 4 here).
Color saturation and color here respectively denote complex magnitude and complex
phase.
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Ln and creates a much more compact set of statistical descriptors:

s1 (j1) ≡ ⟨S1 (j1, l1)⟩l1 , (4.7)
s2 (j1, j2) ≡ ⟨S2 (j1, l1, j2, l2)⟩l1,l2 , (4.8)

where ⟨·⟩l represents the average over orientation indices, lowercase letters denote reduced
scattering coefficients and uppercase are original scattering coefficients. For example, if
we set J = 8, then we have 1 + 8 + 28 reduced scattering coefficients (s0, s1, s2) in total.

Normalization

Since the wavelets filters are dimensionless, the scattering coefficients retain the same
units as the input field I0 across all orders. However, sometimes we need to work with
dimensionless statistics. Additionally, since the coefficients Sn are just once more convo-
lution and modulus operation based on field In−1, they are strongly correlated. To address
these issues—making these coefficients unitless and reducing their correlation—one can
utilize normalized scattering coefficients, defined as:

sn,decor =
sn
sn−1

, (4.9)

where sn and sn−1 should belong to the same branch of the scattering tree, i.e., having
the same {j1, . . . , jn−1}, and then sn,decor should have the same number of features as sn.
The necessity of using the 1st-order ratio s1/s0 depends on the physical significance of
the field and is not always required.

4.2 Understanding the operations

4.2.1 Translation-invariant descriptors
Translation-invariance is a fundamental property of many physical laws. Its features do
not depend on absolute position but rather on the statistical structure of the field. How-
ever, embedding this invariance into a descriptor is not straightforward. In this section,
we take a step back to outline the big picture of translation-invariant descriptor, providing
insights into the scattering transform and a variety of other statistical descriptors.

First, due to their simplicity and interpretability, one might prefer to rely solely on linear
operation to construct translation-invariant descriptors. However, the only descriptor
that satisfies the requirement is the global mean of the field. The reason is as follows.
All translation operators share the same eigenvectors: the Fourier modes, eik·x, with
eigenvalues e−ik·c. The mathematical representation shows in the following equation:

Lce
ik·x = eik·(x−c) = e−ik·ceik·x , (4.10)

where Lc is the translation operator and c here is a constant denoting the shift. If we
want the translation-invariance property for any displacement c, then the eigenvalue,
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e−ik·c, should be unity, which means that k = 0, corresponding to the mean value of the
field.

So, to extract translation-invariant information beyond the global mean value, the esti-
mator we use must involve non-linearity (see Appendix C for mathematical details). A
typical way to achieve this is to first non-linear transform the field, and the take the mean
of the transformed field:

descriptor =≡ ⟨transformed field⟩ . (4.11)

The role of the non-linear operator, such as the modulus, is to convert fluctuations at given
frequency ranges into their strengths. Without this step, the mean value vanishes for zero-
mean fields, implying that direct averaging does not retain any high-frequency (k ̸= 0)
information. By taking the modulus, we capture the strength of the fluctuations in those
frequency bins, effectively transferring high-frequency information into the k = 0 mode
through averaging. Additionally, the non-linear transformation must preserve translation-
invariance, meaning it should commute with the translation operator.

4.2.2 Wavelet convolution and modulus
The scattering operation I →

∣∣I ⋆ ψj,l
∣∣ comprises two steps: a convolution by wavelet fil-

ter and a pixel-wise modulus. Then let’s decompose the two processes and explain them
step by step.

Wavelets

Locality: The wavelet transform is a linear transform that combines properties of both
the Fourier transform, which contains all the frequency information but no spatial infor-
mation, and the pixel decomposition, which includes all spatial information without any
frequency information. The wavelet transform is localized in both real space and Fourier
space. Its reaction to translations smaller than the wavelet scale resembles Fourier coef-
ficients (pure phase shift), whereas for large displacements, it behaves like pixels.

Regularity: Wavelets belonging to the same family—where “family” here refers to a specific
wavelet type, such as Morlet wavelet in this project and Mexican hat wavelet [26]—share
the same shape but differ in orientations and sizes. They offer a broad, logarithmic tiling
in Fourier space, enabling logarithmic sub-sampling of scales. This reduces the number
of coefficients that need to be computed. While wavelet convolution is a linear decom-
position, its extensive logarithmic tiling of scales underpins the deformation stability of
scattering coefficients.

Morlet wavelets

In this project, we use the Morlet wavelet as the convolution kernel, since it provides
a good compromise between spatial and frequency localization. A Morlet wavelet con-
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sists of a plane wave modulated by a Gaussian envelope, resulting in a function that is
simultaneously localized in real and Fourier space. The Gaussian envelope ensures that
the wavelet is compact in space, while modulation defines its central frequency in Fourier
space. We adopt a dyadic scaling scheme, where the wavelet is sampled at scales increas-
ing by factors of two. In Fourier space, each wavelet is centered around a characteristic
frequency, with its bandwidth roughly matched to that frequency, providing a natural
multiscale decomposition.

G (x) =
1√
|Σ|

e−xTΣ−1x/2eik0x , (4.12)

where Σ is the covariance matrix that defines the Gaussian envelope’s size and shape,
and k0 specifies the frequency and direction of the oscillation. For maximum symmetry,
Σ is typically chosen as a diagonal matrix with one eigenvalue distinct from the others,
and k0 aligns with that eigen-direction. The eigenvalue along k0 is set to σ2, while the
other eigenvalues are set to σ2/s2, where s is the ratio of the wavelet’s transverse to radial
width in Fourier space. In Fourier space, the Gabor function corresponds to a Gaussian
filter centered at k0:

G̃ (k) =
1√
|Σ|

e−(k−k0)
TΣ(k−k0)/2 . (4.13)

Wider envelopes calculated the weighted average over larger areas in real space, and they
have narrower profiles in Fourier space, corresponding to the lower k-mode information.
However, there is a problem for Gabor filter: its profile does not go to zero at zero
frequency. This contradicts the admissibility of wavelet, which requires wavelets to strictly
be band-pass filter rather than low-pass filter. To satisfy the admissibility condition, we
subtract a correction term β, leading to the modified Gabor filter [24]. And this is
equivalent to subtract another Gaussian function centered at 0 to cancel the 0-frequency
contribution. Then the corrected Gabor function becomes:

ψ̃ (k) =
1√
|Σ|

e−(k−k0)
TΣ(k−k0)/2

(
eik0·x − β

)
, (4.14)

where β = e−kT
0 Σk0/2, ensuring the wavelet meets the admissibility criterion. The expres-

sion in Fourier space is:
ψ̃ (k) = G̃ (k)− βe−kTΣk/2 . (4.15)

Here, we follow the convention in kymatio, [27], (https://www.kymat.io),

σ = 0.8× 2j ,

k0 =
3π

4× 2j
,

s = 4/L ,

(4.16)

where σ is measured in pixels, j starts from 0, and k0 ranges from 0 to 2π. This config-
uration ensures that the Morlet wavelet family effectively spans the entire Fourier space
using a dyadic scale sequence (2j). Mathematically, we could also see that with increasing
j, k0 is becoming smaller and wavelet in position space is becoming larger and larger, just
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capturing large scale information. On the contrary, it captures small-scale information.
In this project, J = 8 and L = 4 are used. Examples of Morlet wavelets are illustrated in
Fig. 4.5.

Modulus

Wavelet convolution is a linear operation, preserving the first-order properties of the field.
However, for a homogeneous field, linear convolution alone cannot extract information
beyond the mean value ⟨I⟩, as the expectation operator commutes with all linear trans-
formations. To capture information beyond the mean, non-linear operations are required.
In the scattering transform, this is achieved using the modulus operation. The pointwise
modulus is a non-linear transformation that converts selected fluctuations into their local
strengths. Typically, the envelope of these fluctuations has a lower frequency than the
original fluctuations, allowing the modulus to scatter high-frequency information to lower
frequencies.

4.2.3 Hierarchy: information extraction beyond the power spec-
trum

There are some similarities between power spectrum and scattering transform. If we ex-
presss the mathematical form of the power spectrum in terms of the convolution operation,
we have:

P (k) ∝
〈
|I ⋆ ψ′|2

〉
with ψ′ = e−ik·x . (4.17)

Both of power spectrum and scattering transform describe the fluctuation strength as
a function of scales. The difference between scattering transform and power spectrum
lies on the choice of convolution kernels, of which one uses localized wavelet and L1

norm while another applies global Fourier modes and L2 norm. Because of the features
of the convolution kernels, power spectrum’s version of I1 fields, |I ⋆ ψ′|2, contains all
frequency information, like we know the amplitude at each frequency, but it does not
include any spatial information. In contrast, the localized wavelet kernel preserves some
spatial information, as shown in Fig. 4.6. Analogous to the power spectrum, the mean
of I1 filed represents the average amplitude of Fourier modes chosen by wavelets. How-
ever, unlike the power spectrum, the spatial distribution of fluctuations in scattering
transform also captures the phase interactions between these Fourier modes. This in-
formation could be further extracted by doing another scattering transform operation,
I1 → I2 = |I1 ⋆ ψ2| = ||I0 ⋆ ψ1| ⋆ ψ2|, and then we could simply get the second order
scattering coefficients, S2, by taking the average of I2. This process could be repeated to
get higher order scattering coefficients.

Similarly, the S2 coefficients behave like the power spectrum of the I1 fields and charac-
terize how the localized features extracted by I1 are distributed across space. Since I1
already captures the scale-dependent variations of the original field, S2 can be viewed
as quantifying the spatial organization or coherence of these variations, thus providing
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(d) Radial frequency profiles

Figure 4.5: Upper panel: profile of a Morlet wavelet (j = 5, ℓ = 0, image size 512 × 512
pixels) in the real space and Fourier space. The central point in Fourier space represent
zero frequency. Lower panel: Radial frequency profiles of Morlet wavelets with different
scales. Dilating or contracting the wavelet by a factor of 2 gives the whole family of
wavelets. J = 8 and L = 4 for these plots.
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Figure 4.6: Comparison between scattering transform and power spectrum. We have
some input cosmological field I and we apply two different convolution kernels on it. The
upper two are modulus and phase part of scattering transform while the lower two are
power spectrum.
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a higher-order statistical description of the input field. This enables S2 to probe inter-
actions between structures across different spatial scales, beyond what is captured by S1

alone.

Intuitively, we could think of the scattering transform as a hierarchical method to extract
clustering information. Through iteration, we could get nth-order scattering coefficients
Sn. By analogy with the N -point correlation function, we could interpret the physical
meaning behind this. Let’s simply start from the first order. Since we need at least two
points to describe the scale of some structures, the first order scattering coefficients S1

could be understood as two-point correlation function by doing one time of scattering
transform operation on the original fields. Therefore, the 2nd-order scattering coefficients
S2 measures another two points based on previous two points, including information up
to four points. In general, nth-order scattering coefficients Sn contains information up
to 2n points. Thus, scattering transform quickly extract information from higher-order
statistics.

4.2.4 Scattering operation in Fourier space
In general, the modulus operation in real space, being non-linear, will mix Fourier modes
and scatter information across different frequencies. By applying the modulus to I ⋆ ψ,
where ψ has a single peak in Fourier space, we can represent the information of I around
the frequency of ψ in terms of lower frequencies. Essentially, the frequency content of
|I ⋆ ψ| is typically lower than that of I ⋆ ψ.

Intuitively, this is because the modulus converts the oscillation behavior of the con-
volution into a smooth envelope. Mathematically, we could re-write the modulus as√
(I ⋆ ψ) (I ⋆ ψ)∗, where ∗ means complex conjugate. By Taylor expanding the square

root in terms of (I ⋆ ψ) (I ⋆ ψ)∗ − C, we get:√
(I ⋆ ψ) (I ⋆ ψ)∗ − C + C ∝ (I ⋆ ψ) (I ⋆ ψ)∗ − C , (4.18)

where C is the mean of (I ⋆ ψ) (I ⋆ ψ)∗ over all pixels. The leading term of Fourier
transform corresponds to the auto-correlation of I ⋆ ψ in Fourier space. When the power
spectrum of I is a smooth function, the frequency of I ⋆ ψ is similar to ψ. For the Morlet
wavelet, the central wavenumber of the wavelet ψ is defined as k0, shown in Eq. (4.16). As
we can see in Eq. (4.13), the half-width of the envelope in Fourier space is about 1/σ (we
simply approximate the standard deviation of the Gaussian envelope as the half-width of
the wavelet here). And the formula of auto-correlation in Fourier space approximates as:

Ĩ (k) · Ĩ (k) · ψ̃ (k) · ψ̃ (k)

∝ Ĩ2 (k) · ψ̃2 (k)

∝ Ĩ2 (k) · e−(k−k0)
TΣ(k−k0) .

(4.19)

Thus, the half-width of this auto-correlation is
√
2/σ. And from

∣∣∣Ĩ (k) · ψ̃ (k)
∣∣∣2, we could

see that the auto-correlation have a centroid at 0. As
√
2/σ < k0, this shows that typical
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frequency of |I ⋆ ψ| is lower than I ⋆ ψ. As a result, the scattering operation I → |I ⋆ ψ|
re-expresses the high frequency information in terms of lower frequency modes including
0-frequency component. As the 0-frequency component is translation invariant, it can be
directly used as a statistical descriptor of the original field.

4.2.5 Wavelet power spectrum
In Eq. (4.2), we introduced the scattering transform by making three adjustments to
the standard power spectrum: removing the squared modulus, incorporating localized
kernels, and applying repeated transformations through deeper layers. If we insist on
using the squared modulus and keep other modifications, we could get exactly the 2n-point
correlation functions. To make it clearer, we could re-write the squared modulus as |I|2 →
I · I∗, which is just the definition of two-point correlation function. The mathematical
details follow. Let’s first define the coefficients gained from the squared modulus as pseudo
scattering coefficients [28]. Then the general formula of pseudo scattering coefficients are:

Spseudo
n+1 ≡

〈
Ipseudon+1

〉
≡
∫

|In (x) ⋆ ψn+1 (x)|2 dx

=

∫ ∣∣∣Ĩn (k) · ψ̃n+1 (k)
∣∣∣2 dk

=

∫
Ĩn (k) Ĩ

∗
n (k) ·

∣∣∣ψ̃n+1 (k)
∣∣∣2 dk

=

∫
Ĩn (k) Ĩn (−k) ·

∣∣∣ψ̃n+1 (k)
∣∣∣2 dk

=

∫
Pn (k) · ψ̃2

n+1 (k) dk ,

(4.20)

where we used the property that ψ̃n = ψ̃∗
n in Fourier space, and applied Parseval’s the-

orem here,
∫∞
−∞ |f (x)|2 dx =

∫∞
−∞

∣∣∣f̃ (k)∣∣∣2 dk so that the integral of squared modulus in
real space equals to the integral in Fourier space. And Pn (k) here represents the power
spectrum of In. This equation shows that each pseudo scattering coefficient is a weighted
average (binned) of the power spectrum of the previous order of pseudo scattering field.

By applying this equation to the first order, we obtain that Spseudo
1 are averaged power

spectrum (2-point correlation function) of the input field, weighted by wavelets:

Spseudo
1 =

∫
P0 (k) · ψ̃1 (k)

2 dk

= averaged (binned) power spectrum of I0 .

(4.21)

Meanwhile, the first order scattering fields are expressed as:

Ipseudo1 (x) = |I0 (x) ⋆ ψ1 (x)|2

= [I0 (x) ⋆ ψ1 (x)] · [I0 (x) ⋆ ψ1 (x)]
∗ .

(4.22)
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Applying Fourier transform on both sides, we get the Fourier space expression of Ipseudo1 (k):

˜I1
pseudo
1 (k) = F {[I0 (x) ⋆ ψ1 (x)] · [I0 (x) ⋆ ψ1 (x)]

∗}
= F [I0 (x) ⋆ ψ1 (x)] ⋆ F [I0 (x) ⋆ ψ1 (x)]

∗

=
[
Ĩ0 (k) · ψ̃1 (k)

]
⋆
[
Ĩ0 (k) · ψ̃1 (k)

]∗
=

∫ [
Ĩ0 (k

′) · ψ̃1 (k
′)
]
·
[
Ĩ0 (k + k′) · ψ̃1 (k + k′)

]∗
dk′

=

∫
Ĩ0 (k

′) Ĩ∗0 (k + k′) ·
[
ψ̃1 (k

′) ψ̃1 (k + k′)
]
dk′ ,

(4.23)

where we used convolution theorem. This is exactly the same as the two-point correlation
function weighted by some window function. Therefore, the first order scattering fields
are just the two-point correlation function of the input field, weighted by wavelets. Again,
we have second order pseudo scattering coefficients expressed as:

Spseudo
2 =

∫
P1 (k) · ψ̃2 (k) dk

=

∫
Ĩpseudo1 (k) · Ĩpseudo1

∗
(k) · ψ̃2

2dk

=

∫∫∫
Ĩ0 (k1) Ĩ0 (k + k1)

∗ Ĩ0 (k2)
∗ Ĩ0 (k + k2)

·
[
ψ̃ (k1) ψ̃ (k + k1) ψ̃ (k2) ψ̃ (k + k2) ψ̃

2
2 (k)

]
· dk1dk2dk

= weighted averaged trispectrum of I0 .

(4.24)

The integrand consists of four Fourier coefficients of the input field, each modulated by the
first filter ψ̃1, while their difference k is modulated by the second filter ψ̃2. From Fig. 4.7,
we could see the illustration of first- and second-order pseudo scattering coefficients and
the corresponding two- and four-point correlation functions. Higher order cases could
be derived similarly. showing that Spseudo

n behaves exactly the same way as the 2n-point
correlation function, but weighted by ψ1, ψ2, . . . , ψn.
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(a) 1st order pseudo scattering coefficients
 

(b) 2nd order pseudo scattering coefficients

Figure 4.7: Illustration of the pseudo scattering coefficients and their connection to the
N -point correlation function in Fourier space. Since we set parameters such that Morlet
wavelets have isotropic Gaussian profiles in Fourier space, we approximate their regions of
influence using circles. The dashed circles, filled with a gradient color, represent Morlet
wavelet filters at different scales, with darker regions indicating higher filter weights.
The dots at the center of these circles correspond to the peak locations of the wavelet
filters, given by k0 = 0.75π× 2−j. Because Morlet wavelets depend only on the frequency
magnitude and not its direction, their center points can lie anywhere along the dotted
circles centered at the origin. For clarity, we illustrate only one such choice of center in
this figure. Left panel: First-order pseudo scattering coefficients, which depend on the
two-point correlation function at k and −k. Right panel: Second-order pseudo scattering
coefficients, which depend on the four-point correlation function at k1, −k1, −k2−k, and
k2 + k. Since the second wavelet filter, ψ2, captures larger-scale features than the first
wavelet filter, ψ1, the second-order pseudo scattering coefficients provide information at
lower frequencies.
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Chapter 5

Neural Network-based emulator

As machine learning (ML) reshapes technological landscapes across various sectors, its
influence is profoundly felt in the field of cosmology. This branch of astrophysics, which
deals with the origins and evolution of the universe, benefits greatly from the data-driven
insights provided by ML. Given the vast amount of data generated by astronomical ob-
servations and simulations, traditional analysis methods are often insufficient. ML with
its ability to process and interpret large datasets efficiently, is ideally suited to help cos-
mologists tackle these challenges.

In cosmology, ML is primarily used to analyze large-scale cosmic structures and phenom-
ena that are otherwise too mathematically complicated or computationally expensive for
traditional analytical methods. With the advent of extensive sky surveys and simulations
generating petabytes of data, conventional data analysis techniques have become inade-
quate. ML models, especially those involving neural networks, are adopted at handling
such voluminous and complex datasets, providing insights that are both deeper and com-
putationally feasible. Further more, ML algorithms have been pivotal in refining methods
for dark matter and dark energy research, two of the most exclusive aspects of mod-
ern cosmology. By applying these algorithms to gravitational lensing data, researchers
can map dark matter distribution more accurately and infer the properties of dark energy.

The integration of ML into cosmology represents a paradigm shift in how data from the
universe is interpreted. It not only enhances the precision of our existing knowledge but
also paves the way for novel discoveries that push the boundaries of our understanding of
the universe.

In Section 5.1 and 5.2, some ML related terminologies will be introduced. Then in Sec-
tion 5.3, we will discuss the bias-variance tradeoff, a fundamental concept in ML that
highlights the balance between model complexity and generalization. Following that,
Section 5.4 will delve into the structure of deep neural networks, exploring their architec-
ture and components. Finally, Section 5.5 will cover optimization techniques, including
gradient descent and regularization methods, which are essential for training ML models
effectively.
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5.1 Terminology of ML
First, let’s clarify some terminologies that are frequently used in ML and artificial intelli-
gence field. Artificial intelligence, ML and deep learning are usually used interchangeably,
but there exist some distinctions between these three terminologies. Fig. 5.1 shows the
hierarchical relationship between AI, ML and deep learning. And the following gives both
the concept and distinctions of these terminologies:

• Artificial Intelligence (AI): A broad field of computer science dedicated to cre-
ating systems capable of performing tasks that typically require human intelligence.
The primary distinction of AI is its ability to mimic human decision-making pro-
cesses and undertake tasks like reasoning, visual perception, and language under-
standing. AI systems are not necessarily designed to learn from their interactions;
they can simply execute predefined tasks based on programmed rules and logic.

• ML: ML is a subset of AI that specially focuses on algorithms that enable machines
to improve at tasks over time without being explicitly programmed for each task.
The key differentiator for ML is its reliance on data and statistical methods to
“learn” information directly from data without relying on a predetermined equation
as a model. ML systems adapt and improve based on experience, primarily through
exposure to more data.

• Deep Learning: Deep learning is a further specialization within ML, distinguished
by its use of deep neural networks-networks with multiple layers of processing units,
allowing them to learn complex patterns in large amount of data. Deep learning
differentiates itself by the depth of its neural networks, which are capable of learn-
ing from a vast array of features and variables in massive amounts of data, often
outperforming other ML techniques on tasks that involve such complexities.

5.2 Deep learning
Deep learning architectures are based on deep neural networks, which consist of multiple
layers of nodes, also known as neurons. These networks mimic the layered structures
of the human brain and are designed to progressively extract increasingly abstract and
informative representations from the raw input.

• Layers and Nodes: The input layers receives the raw data, which is then processed
through one or more hidden layers, as shown in Fig. 5.2. Each layer consists of nodes
that perform various computations through a set of learned weights and biases. The
output of each node is transformed by a nonlinear activation function, which helps
the networks learn complex patterns.

• Learning Process: In a deep learning neural networks, each subsequent layer
uses the output from the previous layer as its input, refining the abstraction and
complexity of the information. The final output layer produces the predictions or
classifications based on the learned features.
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Figure 5.1: Relationship between AI, ML and deep learning. This diagram illustrates
the nested structures of AI, ML and deep learning. AI is the overarching field that
employs algorithms to perform tasks requiring human-like intelligence. ML is a subset of
AI where algorithms learn from data to make decisions or do regression. Deep learning,
nested within ML, utilizes complex neural networks (such as convolutional and deep neural
networks) to process layered computations and patterns in data, advancing capabilities
beyond traditional ML methods like boosted regression trees and random forests. Image
from [29].

Figure 5.2: Illustration of deep learning neural networks. The left diagram represents a
simple neural network that consists of only one hidden layer. This hidden layer receives
raw data from the input layer, processes it by multiplying with a weight matrix and adding
biases, and then applies an activation function. The processed data is then passed to the
output layers. While the right one shows the multi-layer neural networks. Each layer
might contain different number of nodes, and then each layer receives data from previous
layer, do the matrix multiplication, add bias and then take the nonlinear operation. And
finally pass the data to the output layer. Image from [30].
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Having outlined the fundamental concepts of layers, nodes, and the learning process in
deep learning, it’s natural to delve deeper into how these models are actually trained to
make predictions and decisions. This training can broadly be categorized into two main
types: supervised and unsupervised learning. Each method uses different approaches to
teach machines from data, shaping how they predict and analyze information. In the
following, we will introduce the concept of these two type of learning:

• Supervised Learning: In supervised learning, the model is trained using a la-
beled dataset, which provides both the input features and the corresponding target
outputs. The goal is to teach the model to accurately predict the target output rom
the input data. This method is commonly used for classification tasks, where the
output is a category, and regression tasks, where the out put is a continuous value.
Fig. 5.3 shows the example of supervised learning.

• Unsupervised Learning: Unsupervised learning involves training a model on
data without any labels, allowing the model to discover the inherent structures and
patterns within the dataset on its own. The most common technique is clustering,
where the model groups similar data points together. Fig. 5.4 gives unsupervised
learning.

Figure 5.3: Supervised learning. The left one is regression task where neural network need
to predict the value of temperature. While the right diagram represents classification,
where a temperature value is also provided. Additionally, a threshold is set such that
temperatures below this value are classified as “cold”, and those above it are considered
“hot”. Image from [31].

After exploring the concepts of supervised learning and unsupervised learning, it’s im-
portant to address common challenges such as overfitting and underfitting, which can
significantly impact the performance of ML models. Overfitting occurs when a model
learns the training too well, including the noise and outliers, making it perform poorly on
new data. It is more like memorizing the behavior of the training data, rather than learn-
ing from the data. Underfitting, on the other hand, happens when a model is too simple
to capture the underlying pattern of the data, leading to inadequate performance both
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Figure 5.4: Unsupervised learning. This diagram demonstrates the K-means clustering
algorithm [32], a method of unsupervised learning. Before clustering, the data points
are unlabeled and dispersed. After applying K-means, the data points are grouped into
clusters (shown in different colors), each representing a collection of data points with
similar characteristics. Image from [33].

on the training data and new data. Fig. 5.5 shows the result of overfitting and underfitting.

5.3 Bias-Variance tradeoff
Usually, the complexity of models directly affects the fitting effect. When the model is
too simple, meaning the low complexity, it’s very difficult to capture the complicated
characteristics of given data. Just like the underfitting in Fig. 5.5, it’s impossible to fit
the data with only a linear function. While very complex models often correspond to
overfitting. In this case, the model seems to be specially customized for this set of data
and cannot be used for other data at all, like the overfitting part in Fig. 5.5. Therefore,
we need to adjust the complexity of our models so that they are just right for the data
we are dealing with. And there is a terminology for this problem, Bias-Variance Tradeoff.
The concepts of bias and variance in this context follows:

• Bias: Bias refers to the errors introduced when a complex real-world problem is
approximated using a model that is too simplistic. In ML, high bias occurs when
the model fails to capture the underlying patterns of the data, often resulting in
underfitting. This is evident even if we train our models on an extremely large
dataset—potentially infinite in size—the error remains significant. For instance,
employing a linear model to fit data derived from a quadratic function will lead
to substantial bias. The linear model, due to its simplicity, underfits the data
regardless of the absence of noise.

• Variance: Variance refers to an algorithm’s sensitivity to minor fluctuations in the
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Figure 5.5: Illustration of underfitting, good fit and onverfitting. For underfitting, the
model is too simplistic to effectively represent the data. In cases of a good fit, the model is
appropriately balanced—not too simple or complex—and can generalize well to represent
the typical case. For overfitting, the model is excessively complex, fitting the training
data points perfectly but performing poorly on new datasets. Image from [34].

training set. High variance can lead an algorithm to model the random noise within
the training data rather than the intended outputs, resulting in overfitting. This
issue is commonly seen in overly complex models that have an excessive number
of parameters relative to the number of observations. In simpler terms, the model
learned from the training set does not generalize well to new, unseen data—the
test error is high. there is a large risk that we’re fitting patterns in the data that
happened to be present in our small, finite training set, but that do not reflect the
wider pattern of the relationship between input and output. For example, fitting a
training dataset generated from a quadratic function with an nth order polynomial
(where n + 1 is equal to the number of data points in the dataset) might result
in a model that perfectly passes through every data point, achieving 0 error on
this training set. However, such a model is unlikely to perform well on any other
dataset. The variance can be intuitively characterized by the amount of variations
across models learned on multiple different training datasets.

Fig. 5.7 graphically demonstrates the bias and variance. Briefly speaking, bias measures
how close the model approximates the “true” function and variance indicates how stable
the model’s stability in response to the noise in the data. To mathematically state the
bias-variance tradeoff for regression problems, we consider the following setup [37]:

• Draw a training dataset S =
{
x(i), y(i)

}n
i=1

such that y(i) = h⋆
(
x(i)
)
+ξ, where h⋆ (·)

is the ground truth function and ξ is the error with the Gaussian distribution of
zero mean and σ2 variance: ξ(i) ∼ N (0, σ2). And the distribution of this error is
independent of the model (say, E [ξh⋆] = E [ξ]E [h⋆]).

• Train a model on the dataset S, denoted by ĥS (·).

• Consider a test example point (x, y) such that y = h⋆ (x) + ξ, and measure the ex-
pected test mean square error (MSE, this will be introduced in Section 5.4) (average
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Figure 5.6: Bias-Variance tradeoff. With increasing model complexity, the bias is always
decreasing while the variance keeps increasing. To find the point where the total error is
minimum, we have to balance the variance and bias. Image from [35].

Figure 5.7: Bias and Variance. This diagram depicts the predictions of a model, where
each dot represents a single prediction and the center of all circles represents the ground
truth value. The closer the dots are to the center, the more accurate the model. The top
left one is the model with low bias and low variance, which is the model we like. The
top right one represents low bias and high variance model, since the dots are all near the
center but they are all scattered. The bottom left one means high bias and low variance,
because the predictions are far away from the ground truth and are very concentrated.
The bottom right one illustrates high bias and high variance, given that the dots are all
far from the center and also scattered. Image from [36].
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over the random draw of the training set S and the randomness of ξ)

MSE (x) = ES,ξ

[
(y − hS (x))

2] . (5.1)

We now decompose the MSE into a bias and variance term.

MSE (x) = E
[
(y − hS (x))

2]
= E

[
(ξ + (h⋆ (x)− hS (x)))

2]
= E

[
ξ2
]
+ 2E [ξ (h⋆ (x)− hS (x))] + E

[
(h⋆ (x)− hS (x))

2]
= E

[
ξ2
]
+ 2E [ξ]E [(h⋆ (x)− hS (x))] + E

[
(h⋆ (x)− hS (x))

2]
= σ2 + E

[
(h⋆ (x)− hS (x))

2] .
(5.2)

We define havg(x) = ES[hS(x)] as the “average model”—the theoretical model created by
generating an infinite number of datasets, training models on each, and then averaging
their predictions for x. Note that havg is a hypothetical model used for analytical purposes
and is not attainable in reality, as acquiring an infinite number of datasets is practically
impossible. However, in many instances, havg is found to be approximately equivalent to
the model developed by training on a single dataset that contains an infinite number of
samples. We then can decompose MSE(x) by letting c = h⋆ (x) − havg (x) (which is a
constant that does not depend on the choice of S, since h⋆ is a deterministic function and
havg is defined as the average over infinite of training sets).

MSE (x) = σ2 + E
[
(h⋆ (x)− hS (x))

2]
= σ2 + E

[
(h⋆ (x)− havg (x) + havg (x)− hS (x))

2]
= σ2 + E

[
(h⋆ (x)− havg (x))

2]+ E
[
(havg (x)− hS (x))

2]
+ 2E [(h⋆ (x)− havg (x)) (havg (x)− hS (x))]

= σ2 + E
[
(h⋆ (x)− havg (x))

2]+ E
[
(havg (x)− hS (x))

2]
+ 2cE [(havg (x)− hS (x))] .

(5.3)

Based on the definition of havg, we have

E [(havg (x)− hS (x))] = E [havg (x)]− E [hS (x)] = 0 . (5.4)

Thus, the final expression of MSE(x) becomes:

MSE (x) = σ2 + E
[
(h⋆ (x)− havg (x))

2]+ E
[
(havg (x)− hS (x))

2]
= σ2︸︷︷︸

unavoidable

+(h∗(x)− havg(x))
2︸ ︷︷ ︸

≜ bias2

+Var(hS(x))︸ ︷︷ ︸
≜ variance

. (5.5)

We call the second term the bias (square) and the third term variance. As previously
mentioned, the bias reflects the portion of error that arises from the limited expressivity
of the model. Recall that havg represents the optimal model that could be learned, even
with infinite amount of training datasets. Therefore, the bias is not a result of insufficient
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data; instead, it stems from the inherent inability of the model family to adequately ap-
proximate h⋆.

The variance component accounts for the errors introduced by the random characteristics
of a finite dataset. It quantifies the learned model’s sensitivity to the randomness of
dataset. Typically, variance decreases with increasing data size.

5.4 Structure of deep neural networks
Having discussed the fundamental concepts of bias and variance as depicted in above
sections, it’s essential to explore how these factors are influenced by the structure of deep
learning neural network. The architecture of a neural network-ranging from the number
of layers to the type of layers used-plays pivotal role in determining the balance between
bias and variance. A well-designed network structure can effectively minimize bias by
capturing complex patterns in the data, while also managing variance to ensure robust
performance on new, unseen data. The following section will delve into the architecture
of execution of deep learning networks and its critical role in optimizing this balance to
enhance model performance and generalization, as shown in Fig. 5.8.

The training process encompasses a series of crucial steps, each aiding the network in its
capacity to discern intricate relationships and patterns:

• Weight Matrix and Bias: Weights are numerical values associated with neurons
in two adjacent layers. They determine the strength of these connections and, in
turn, the influence that one neuron’s output has on another neuron’s input. They
can increase or decrease the importance of specific information. While biases are
essentially constants associated with each neuron and added to the neuron’s output.
Biases serve as a form of offset or threshold, allowing neurons to activate even when
the weighted sum of their inputs is not sufficient on its own. They introduce a level
of adaptability that ensures the network can learn and make predictions effectively.
The mathematical expression could be written as follows, with w being the weight
matrix, b the bias, X the input, Y the output:

Y = w ·X + b . (5.6)

• Activation Function: Activation functions introduce non-linearity to the model,
making it learn the complex decisions and predictions. Without this non-linearity
feature, a neural network would behave like a linear regression model, no matter
how many layers it has. The activation function decides whether a neuron should
be activated by calculating the weighted sum of inputs and adding a bias term.
Activation functions also enable the backpropagation by providing gradients that
are essential for updating the weights and bias. The types of activation function
could be seen in Section 5.4. The expression for the activation function, σ, is given
by:

Z = σ (w ·X + b) . (5.7)
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Figure 5.8: The architecture of deep learning neural networks. The raw data is forwarded
to the hidden layer, where it is multiplied by a weight matrix and then added to a bias.
This is followed by the application of a non-linear activation function, after which the
processed data is sent to the next layer. After passing through n hidden layers, the
architecture produces final predictions, which are compared to the actual label values.
The loss function, which varies depending on the specific problem being addressed, is
calculated. We then use the gradient descent method to update the weight matrix and
proceed with another training iteration.
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• Loss Function: The loss function, also referred to as the error function, quantifies
the discrepancy between the network’s prediction Ŷ and actual target values Y . The
resulting value, the loss, reflects the accuracy of the model’s predictions. Usually
we want to find the global minimum of the loss function, corresponding to the most
accuracy model during the process of training.

• Backpropagation: Backpropagation is an algorithm used to train neural networks.
Usually, it typically employs the gradient descent method, detailed in Section 5.5,
to minimize the loss function and update weights and biases. The update equation
could be written as:

wi = wi − η · dL
dwi

, (5.8)

where L represents the value of loss function, wi denotes an element in the weight
matrix, and η is the learning rate.

Activation Function

Having introduced the structures of deep learning neural networks, here we are going to
discuss one of the most crucial elements of deep neural networks: non-linear activation
functions. These functions significantly enhance the model’s expressiveness according to
the universal approximation theorem [38]. Each node in a neural layer performs merely
affine so this limitation confines the space to linear relations. On the other hand, non-
linear activation functions leverage the capacity of multiple layers, thus broadening the
potential range. Typically, these functions are designed to be simple to address compu-
tational limitations. Here we will introduce some non-linear activation functions that are
frequently used in deep learning, also seen in Fig. 5.9:

• Sigmoid: The sigmoid function is one of the most frequently used activation func-
tions in the early days of deep learning. It is a smooth function that is easy to take
derivatives. The mathematical equation follows:

σ (x) =
1

1 + e−x
. (5.9)

However, the sigmoid function has some drawbacks. First, the gradient vanishes
when x is very large or very small, resulting in long steps to converge, shown in
Fig. 5.9. Also, the output is not zero-centered and always greater than zero, leading
to zig-zagging dynamics in the gradient updates for the weight.

• ReLu (Rectified Linear unit): ReLu is currently one of the most popular acti-
vation functions, and basically it’s just a function that takes the maximum.

ReLu = max (0, x) . (5.10)

ReLu solves the gradient vanishing problem (in the positive regime). The compu-
tation is very vest, requiring only a check if the input is greater than zero. And it
converges much faster than sigmoid and tanh function.

61



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

• Tanh: The Tanh function is also a very popular non-linear activation function. It
solves the zero-centered problem, but the gradient vanishing problem still exists,
described in Fig. 5.9. It is defined as:

tanh x =
ex − e−x

ex + e−x
. (5.11)
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Figure 5.9: Non-linear activation functions. The activation functions and their derivatives
comprising Sigmoid, ReLu, Tanh, LeakyReLu, Softmax and Exponential Linear Unit
(ELU) were generated using Torch, where the slope of negative regime for LeakyReLu
was set to 0.1.

Loss Function

In supervised learning, the loss function plays an important role in the training process.
This function serves as a measure to quantify the difference between the predictions made
by the model and the actual data. By doing so, it allows the model to incrementally im-
prove its performance through the optimization process. Common loss functions include
MSE, cross-entropy loss, Kullback-Leibler Divergence (KL Divergence), negative loglike-
lihood (NLL) and so on. In this project, we use MSE to quantify the error. So we will
introduce MSE in the following.

MSE is a widely used loss function in regression problem tasks. The MSE quantities the
average squared deviation between the model’s prediction, denoted as ŷ, and the observed
values, written as y, within the dataset. In this case of a dataset containing n data points,
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the MSE is calculated as follows:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 , (5.12)

where ŷi represents the predicted value for the ith data point, while yi corresponds to the
ith observed data in this dataset. It’s crucial to understand that employing the MSE loss
function does not ensure that the trained networks will provide an unbiased estimation
of the model parameters. As depicted in Eq. (5.5), the MSE comprises both a bias term
and a variance component.

5.5 Optimization
In this section, we will introduce the optimization, a pivotal aspect of ML that ensures the
effective training of models. This section delves into gradient descent [39], a fundamental
algorithm for minimizing the loss function, highlighting its role in driving the convergence
of model parameters towards optimal values. Additionally, regularization [37] techniques
will be discussed, which are crucial for preventing overfitting and enhancing the model’s
generalization capabilities. Lastly, the section covers hyperparameters, which, unlike
model parameters that are modified during training process, are set prior to the training
process and significantly influence the learning trajectory and performance of the model.
Together, these components form the backbone of successful ML outcomes, balancing
model complexity with predictive accuracy.

Gradient Descent

The gradient descent method is the most widely used algorithm to train ML models by
minimizing errors between predicted and actual results. Its basic idea is to minimize the
loss function by iteratively moving in the direction of the steepest descent as defined by
the negative of the gradient of the model parameters, such as weight matrices and biases,
shown in Fig. 5.10. And we hope that the iteration stops when it reaches the global
minimum position. The general equation of gradient descent for multiple dimensions
follows:

θn+1 = θn − η∇θL (θ) , (5.13)
where θ represents parameters of the model with subscript n and n + 1 referring to the
number of iterations, η denotes the learning rate (also called step length), L is the loss
function, and ∇θ means the derivative with respect to parameters θ.

Type of Gradient Descent

Usually there are three popular types of gradient descent that mainly differ in the amount
of data we use:

• Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) calculates
the gradient and updates the model parameters using just one randomly chosen
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training sample. This random selection adds an element of unpredictability to
the optimization process, hence the term “stochastic”. It is computationally more
efficient than the conventional gradient descent method because it processes only
one data point at a time. However, SGD tends to be noisier than standard gradient
descent and often requires more iterations to achieve the minimum due to this
inherent randomness.

• Batch Gradient Descent: Batch gradient descent sums the error for each point
in a training dataset, updating the model only after all the training samples have
been evaluated. And this process refers to as a training epoch. The advantage of
this method is that it generates a stable error gradient and a stable convergence.
However, it could be slow and computationally expensive when dealing with large
datasets and complex models. Besides, it can get stuck in shallow local minima or
saddle points where the gradient is either very small or zero.

• Mini-Batch Gradient Descent: Mini-batch gradient descent uses a subset of
a training set, called mini-batch, to compute the gradient at each iteration. This
approach strikes a balance between the computational efficiency of batch gradient
descent and the speed of stochastic gradient descent. The size of the mini-batch can
vary, acting as a hyperparameter. Note that we should tell the difference between
epoch and iteration here. One epoch refers to one complete pass through the entire
training dataset, while iteration denotes the process of using one mini-batch to
compute the gradient. For example, there are 95 training samples in total and we
choose 10 as the size of mini-batch. Then each epoch contains 10 iterations.

Learning Rate

Learning rate is an important hyperparameter that affects the speed of convergence and
stability. Traditionally, people set learning rate as a fixed value, meaning we need to start
at high learning rate and manually change it by steps or by some learning schedule. A
small learning step at the onset would lead to very slow convergence, while a very high
rate at the start might miss the minima. Then, Adam [40] optimization algorithms are
proposed to improve convergence speed and stability. Let’s explain this algorithm step
by step, starting from the momentum to the final Adam.

1. SGD: SGDmethod follows the constant learning rate and it’s described by Eq. (5.13),
moving towards the opposite direction of greatest gradient. The effect of different
learning rates are shown in Fig. 5.10.

2. Momentum: When using SGD, we might meet the situations where the learning
process follows a zigzag motion, causing the model to converge too slowly. This is
because the direction of gradient changes greatly after each iteration. By introducing
momentum [41], we take previous gradients into account, which largely cancels out
the oscillation part and moves as directly as possible in one direction. If we are lucky
to have that a gradient has been consistently pointing in the same direction, and then
the momentum term proportional to the previous gradients will also accumulate and
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accelerate the optimization in that direction.

θn+1 = θn − ηvn , (5.14)
vn = βvn−1 + (1− β)∇θL (θ) , (5.15)

where vn and vn−1 represent current and previous momentum, and β serves as a
hyperparameter that controls the extent to which the previous momentum affects
the current update.

3. AdaGrad: Adaptive Gradient (AdaGrad) [42] is the algorithm allowing parameters
to have their own disinct learning rates. This method adjusts the learning rate
dynamically during the training process, based on the historical accumulation of
the squared gradients for each parameter. Mathematically, this could be described
by:

θn+1 = θn −
η√

Gn + ϵ
∇θL (θn) , (5.16)

Gn = Gn−1 + (∇θL (θn))
2 , (5.17)

where Gn represent the sum of squares of all gradients in history, and ϵ is a very
small constant preventing the denominator to be zero.

4. RMSprop: AdaGrad faces a significant issue due to its accumulation of all past
gradients, which results in an increasingly smaller learning rate. This continual re-
duction can dramatically slow down the convergence rate as training progresses. To
solve this problem, RMSprop [43] progressively forgets past gradients by multiplying
them with a factor less than 1, effectively performing an “exponential moving av-
erage”, which exponentially decreases the influence of past gradients. The equation
is basically the same as Eq. (5.16), but changes the term Gn into:

Gn = αGn−1 + (1− α) (∇θL (θn))
2 , (5.18)

where α is the decay rate, similar to the momentum term, representing that we
gradually forget the contribution from earlier gradients.

5. Adam: The Adaptive Momentum (Adam) algorithm integrates the benefits of both
momentum and RMSprop. It employs momentum to enhance the directionality of
the gradient updates and utilizes the principles of RMSprop to optimize the learning
rate. This combination allows Adam to effectively adjust its updates, promoting
faster and more stable convergence in training neural networks. The equation is
represented as follows:

θn+1 = θn −
η√

Gt + ϵ
vn , (5.19)

Gn = αGn−1 + (1− α) (∇θL (θn))
2 , (5.20)

vn = βvn−1 + (1− β)∇θL (θn) . (5.21)

In this project, we utilized Adam algorithm to do the optimization.
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(a) Small learning rate
 

(b) Just right
 

(c) Big learning rate

Figure 5.10: Gradient descent with different learning rates. (a) illustrates the gradient
descent with a very small learning rate, resulting in a long time to reach minima. (b) uses
just right step length and reaches minima with fast speed. (c) demonstrates the effect of
big learning rate, which causes the divergence.

 

Figure 5.11: Illustration of the loss function landscape in parameter space. The optimiza-
tion process (e.g., gradient descent) can get stuck in a local minimum (blue) instead of
reaching the global minimum (orange), which corresponds to the best fit to the data. The
vertical dashed line indicates the location of the global minimum in parameter space.
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Regularization

Regularization is a method employed in ML to curb overfitting and keep, at the same
time, the training error as low as possible, enhancing models’ ability to generalize to
new, unseen data. It discourages the model from fitting the training data too closely
and promotes simpler or more regular patterns in the learned parameters. By doing so,
regularization helps the model avoid learning noise or insignificant details present in the
training dataset, ultimately improving its accuracy on test data. Here we will introduce
three widely used regularization methods: dropout [44], batch normalization [45] and
early stopping [46].

• Dropout: Dropout involves randomly ignoring or dropping out some layer outputs
during training. Dropout is implemented per-layer in a neural network and each
node in the layer will be ignored with probability p for every iteration, and this
essentially removes them temporarily from the network. The reasons why dropout
can solve overfitting follow.

– There is an averaging effect. First, let’s return to the standard model without
dropout. We use the same training set to train different neural networks, and
we could get different predictions with these models. Then we could take the
average of these predictions to gain the final result. Because different models
might have different overfittings, and the operation of average could help to
cancel out the overfittings with opposite directions, which contributes to the
generalization. Dropout method ignores different nodes during the training
process, which is similar to training different models. Because removing the
nodes randomly has greatly changed the neural networks, the entire process of
dropout is almost equivalent to taking the average of different neural network
models.

– Reduce complex co-adaptations between neurons. The dropout process means
that two neurons are not necessarily present in the same dropout network
every time. As a result, the update of weights no longer depends on the joint
action of hidden nodes with a fixed relationship, preventing the situation where
certain features are only effective under specific other features. This forces the
networks to learn more robust features, which exist in random subsets of other
neurons. In other words, if our neural network is making a certain prediction,
it should not be overly sensitive to specific clues or fragments. This shows that
we should not give a node too much weight, meaning that each node needs to
make similar contributions, rather than some certain nodes making excessive
contributions. Even if it loses specific clues, it should be able to learn some
common features from many other clues.

• Batch Normalization: Batch normalization process involves calculating the mean
and variance of each feature in a mini-batch and then scaling and shifting the
features using these statistics so that they have zero mean and one variance value.

x̂i =
xi − µ√
σ2 + ϵ

, (5.22)
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where µ is the mean value, µ = 1
N

∑
i xi, σ2 is the variance of this feature, σ2 =

1
N

∑
i (xi − µ)2, and ϵ is a small constant that prevents division by 0. Since the

original input data might cover many magnitudes, this leads to a zigzag path when
implementing gradient descent. Batch normalization ensures that the input to each
layer remains roughly the same order of magnitude, regardless of changes in the
distribution of earlier layers’ output. Consequently, this helps in stabilizing the
training process, enabling higher learning rates and faster convergence.

• Early Stopping: Early stopping involves stopping the training process before
the model starts to overfit, usually referring to stop before the given number of
epoch. When the training reaches a certain level, the error on the training dataset
continues to decrease while increase on the testing dataset. Ideally, we hope to stop
at that point. In practice, we terminate the training when the testing error has not
decreased for a certain number of consecutive steps.

Hyperparameter

This section, we will delve into hyperparameters, which are crucial settings established
before training phase begins, distinct from model parameters which evolve during training.
Hyperparameters are pivotal as they shape the learning path and overall outcomes of the
model, affecting how quickly and effectively a model can learn from data. These settings
are fundamental to the structure and optimization of learning algorithms, influencing
everything from convergence speed to model accuracy and robustness. In the following,
we are going to give some brief introductions about the hyperparameters we optimized in
this project.

• Batch Size: Batch size refers to the number of training samples used in one itera-
tion. It affects model’s convergence rate, memory efficiency and training stability.
A larger batch size provides a more accurate estimate of the gradient, but it requires
more memory and is less efficient. Conversely, a smaller batch size offers a faster
computations and can help the model escape local minima, though it may lead to
a noisier gradient estimate, affecting the stability of the convergence.

• Number of Layers: The number of hidden layers in a neural network, often re-
ferred to as the depth of the network, determines its capacity to learn complex
patterns. More hidden layers allow the network to capture higher levels of abstrac-
tion in the data, which can be crucial for tasks involving complex data structures.
However, increasing the number of hidden layers can also make the network prone
to overfitting, especially if there is not enough data to support the increased model
complexity.

• Number of Nodes: Nodes, also known as neurons, are the fundamental units of
computation in a neural network. The number of nodes in each layer impact the
capacity of the layer to represent different features of the input data. More nodes
can allow for a more detailed and nuanced learning of data intricacies but can also
lead to overfitting and increased computational demand. Balancing the number of
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nodes is crucial for optimizing performances without unnecessarily complicating the
model.

• Learning Schedule: The concept of learning schedule, often referred to as learn-
ing rate schedule or learning rate decay, adjusts the learning rate according to a
predefined schedule or set of rules. It modifies the learning rate dynamically based
on either the number of epochs completed or the performance of the model on the
training or validation set. Early in training, a larger learning rate can expedite
convergence by taking larger steps. As training progresses, reducing the learning
rate can help the model fine-tune its parameters more delicately, avoid overshooting
minima. If the learning schedule is too short, then we might not get the optimized
model but the one with error oscillating around the minima. And if the learning
schedule is too long, it takes us too much time on useless training since the learning
rate would be super small and it takes tons of time to reach the minimal position
of the error.

Each of these hyperparameters must be carefully tuned to balance the trade-off between
training efficiency, model complexity and generalization ability. In this project, we em-
ploy optuna [47], a python package, to tune the hyperparameters and find the optimal
configuration that offers the best performance on unseen data.
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Chapter 6

Validation on CosmoGridV1
simulation

Having introduced the conceptual framework of weak lensing and the scattering trans-
form, we now move on to describe the simulation dataset used throughout this work. In
particular, we will detail how weak lensing convergence fields are constructed from N -
body simulation and how we incorporate realistic observational effects such as intrinsic
alignments, shape noise, and multiplicative bias into the simulated data. This simulation
dataset provides the basis for testing our scattering transform method and validating the
cosmological parameter constraints derived from weak lensing observables.

This chapter is organized as follows. In Section 6.1, we describe the basis setting for
CosmoGridV1 simulation. In Section 6.2 we will demonstrate how the weak lensing fields
are constructed from N -body simulation. And in Section 6.3, some systematic effects
would be discussed and we will include these effects for later calculation. Finally, we will
present how to extract square maps from the full sky maps in Section 6.4.

6.1 CosmoGridV1 simulation
In this project, we use the public available CosmoGridV1 Simulations [48], which are a
set of N-body simulations with baryonic feedback. Specifically, the baryonic feedback
was introduced by modifying the particle positions inside a dark matter-only N-body
simulation snapshot and the detailed will be discussed in Section 6.3.1. The boxsize for
this simulation is V = 9003 (Mpc/h)3 and number of particles is npart = 8323 for each
box. The simulations vary six parameters:

• Ωm: matter density parameter today, which is the sum of the baryon, cold dark
matter, and neutrino densities, (Ωm + Ωb + Ων). The neutrino mass is fixed to
three degenerate neutrinos, each with mν = 0.2 eV.

• σ8: matter clustering amplitude with a top-hat filter of radius 8 Mpc/h.

• w0: dark energy equation of state.
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• ns: spectral index of the primordial power spectrum.

• Ωb: baryon density parameter today.

• H0: Hubble constant.

The distributions of these parameters are shown in Fig. 6.1. Most of the distributions
have square shapes, but for σ8 − Ωm, w0 − Ωm and w0 − σ8 planes, there are additional
restrictions on the prior, which remove some combinations of these parameters from the
simulation set. This is because the wCDM model effectively accounts for the relativistic
fields, including neutrinos, and is inherently similar to the phantom crossing in dark en-
ergy models. The boundaries of the prior are shown in Table 6.1.

The variable parameters were sampled on a 6-dimensional Sobol sequence. Further, the
grid is divided into wide and narrow priors, split evenly. The fiducial cosmology is listed
in Table 6.1. And Fig. 6.2 shows the redshift distribution [49] used for the projection in
CosmoGridV1.

fiducial ∆ fid. wide grid prior narrow grid prior
Ωm 0.26 ± 0.01 ∈ [0.10, 0.50] ∈ [0.15, 0.45]
σ8 0.84 ± 0.015 ∈ [0.40, 1.40] ∈ [0.50, 1.30]
w0 −1 ± 0.05 ∈ [−2.00,−0.33] ∈ [−1.25,−0.75]
ns 0.9649 ± 0.02 ∈ [0.87, 1.07] ∈ [0.93, 1.00]
Ωb 0.0493 ± 0.001 ∈ [0.03, 0.06] ∈ [0.04, 0.05]
H0 67.3 ± 2.0 ∈ [64.0, 82.0] ∈ [65.0, 75.0]

Table 6.1: CosmoGridV1 simulation parameters and their priors. Parameter Ωm, σ8 and
w0 have their additional restrictions beyond the box prior here, as shown in Fig. 6.1.

6.2 Lightcone construction
The simulation can be ran in a snapshot or lightcone mode, where the first one requires to
store the full particle position at a set of given timestep and the latter one is based on thin
particle shells at the given cosmic redshift [52, 53]. After the simulation are completed,
a set of tomographic survey maps can be created either using Born approximation or
ray tracing technique [54, 55]. These maps are created by integrating the shell particles
density against the relevant probe kernel , which is typically a function of the redshift dis-
tribution of selected galaxy sample n (z) and cosmological parameters. In CosmogridV1,
lightcone construction and Born approximation are adopted for full sky map generation.

The lightcone is constructed by concentrically stacking the shells at different redshift
of the replicated density field around the observer who is standing at z = 0. In order
to construct a lightcone spanning a large survey volume, CosmoGridV1 utilizes a shell
permutation scheme to create a high resolution of the simulated density field across the
full survey volume. This is achieved by dividing the lightcone into groups of shells, with
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Figure 6.1: Distribution of the parameters of 2500 different cosmology simulations. For
each cosmology, there are 7 different realizations. The blue and pink parameters belong to
the “wide” and “narrow” grid respectively. The red stars represent the fiducial cosmology,
which contains 200 realizations.
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Figure 6.2: Estimated redshift distributions and lensing kernels for the fiducial source
galaxy sample used in this analysis. The DES Y3 cosmic shear signal is primarily sensitive
to large-scale structure in the redshift range z = 0.1–0.5, where the individual lensing
kernels peak. Each distribution is normalized independently over the range z = 0–3.
The total effective number density of source galaxies is neff = 5.59 arcmin−2 [50], divided
approximately equally among the four redshift bins. Credit from [51].

each group taken from an independent simulation boxes with different initial conditions.
Before putting the simulation boxes into the lightcone, CosmoGridV1 adopt a random-
ization scheme to increase the number of realizations from one underlying simulation run
[56, 57]. It applies random operations to the particle positions or to the δ field on the
3D grids consisting of rotations bt 90° (interchanging the axes), translation and parity
flips [58]. Such a randomization of the simulation boxes avoids the repetition of the same
structure present in the density field along the line of sight, bringing the variance of the
maps closer to the true cosmic variance. The groups of the shells are chosen such that
the outer z border of each shell in the group is crossing the boundary of the box, making
the width of each shell approximately equal to the length of the box, about 900 Mpc/h.
The redshift range of this lightcone covers from z = 0 to z = 3.5 and it typically consists
of around 6 replicated boxes. Since there are 7 independent realizations for each cosmol-
ogy, this further allows for creating lightcones with all the boxes within the same shell
coming from unique initial conditions, which ensures that no line of sight will experience
the same points in the simulation volume across the multiple replicas. The illustration of
this construction is shown in Fig. 6.3.

For the CosmoGridV1 simulations, the methodology follows the framework outlined in
[56, 59], where the Born approximation is deemed sufficiently accurate for weak lensing
studies on intermediate scales using UFALCON1 code , as demonstrated by [54, 60]. The 2D
projected fields, such as convergence and intrinsic alignment maps, are computed using

1https://cosmology.ethz.ch/research/software-lab/UFalcon.html
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Figure 6.3: Illustration of the full-sky lightcone construction achieved by replicating the
density field and applying shell permutation. The observer is positioned at the center
of the lightcone, with the density field at discrete redshifts used to form the shells. The
square grid represents the periodic boundaries of the simulation boxes for the fiducial
cosmology. The lightcone volume covered by different shell groups, each derived from
separate simulations with distinct initial conditions, is depicted in various colors. Adapted
from [56].

the following expression:

mpix
2D ≈

∑
b

Wm

∫
∆zb

dz

E (z)
δ3D

[
c

H0

D (z) n̂pix, z

]
, (6.1)

where Wm represents the relevant probe kernels, n̂pix is the unit vector pointing to the
pixel center, D (z) is the dimensionless comoving distance, E (z) satisfies dD = dz/E (z),
and ∆zb is the thickness of the shell b. The kernelsW for weak lensing (WL) and intrinsic
alignment (IA) are defined as in [61]:

WWL =
3

2
Ωm

∫
∆zb

dz
E(z)

∫ zs
z

dz′n (z′) D(z)D(z,z′)
D(z′)

1
a(z)∫

∆zb

dz
E(z)

∫ zs
z0

dz′n (z′)
, (6.2)

W IA =

∫
∆zb

dzF (z)n (z)∫
∆zb

dz
E(z)

∫ zs
z

dz′n (z′)
, (6.3)

where n (z) is the galaxy redshift distribution, zs and z0 are the source and observer
redshifts, respectively. The function F (z), which depends on cosmology and redshift, is
given by:

F (z) = −C1ρcrit
Ωm

D+ (z)
, (6.4)
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where C1 = 5× 10−14 h−2M⊙Mpc3 is a normalization constant, ρcrit is the critical density
at z = 0, and D+ (z) is the normalized linear growth factor with D+ (0) = 1.
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Figure 6.4: Illustration of the probability density distribution (PDF) of the convergence
maps. The left panel shows the PDF of the convergence maps for different cosmologies
of same initial random seed at latest redshift bin, and the cosmological parameters are
basically the same as fiducial cosmology, with only w0 being slightly changed. While the
right panel shows the PDF of the same convergence maps but different tomographic bins.
From tomographic bins 0 to 3, the redshift increases.

Fig. 6.5 shows the full-sky map of weak lensing convergence and intrinsic alignment pro-
jected under this lightcone construction. And Fig. 6.4 shows an example of how the PDF
changes with different cosmological parameters. As we can see, with different parameter
of the equation of state for dark energy, the peak shifts slightly towards the underdense
regions, while the height of the long tail on the right becomes lower for the blue histogram.
For different tomographic bins, the PDF of the lowest redshift bin has a higher peak and
more localized distribution, while the largest redshift one corresponds to a lower peak and
a more extended distribution. Two reasons might account for these:

• At lower redshifts, the distance between the observer and the sources is smaller,
meaning that the convergence at low redshift integrates over a shorter portion of the
large-scale structure compared to higher-redshift bins. A shorter integration path
implies that fluctuations in the mass distribution have less chance to accumulate,
leading to smaller fluctuations in κ.

• The lensing efficiency function, which weights how much a mass fluctuation con-
tributes to κ, is lower for lenses close to the observer (low redshift), especially if the
sources are not far behind them. This weaker efficiency kernel further suppresses
the amplitude of κ fluctuations.

Overall, these results highlight the interplay between redshift, lensing efficiency, and the
integration path in shaping the convergence PDF.
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Another thing we should pay attention to in Fig. 6.4b is the non-Gaussianity of the
convergence maps. As the redshift increases, the PDF becomes broader and more sym-
metric, indicating that the field approaches Gaussianity at higher redshifts. In contrast,
the lowest-redshift bin exhibits a sharper peak and noticeable skewness toward low κ,
reflecting stronger non-Gaussianity due to the enhanced nonlinear structure formation
at late times. This trend is consistent with the expected time evolution of gravitational
clustering [62].

6.3 Systematic effects

6.3.1 Baryonic feedback
On small scales, the distribution of matter density is significantly influenced by baryonic
feedback effects [64], which include processes such as gas cooling, star formation, and
feedback from Active Galactic Nuclei (AGN). These effects introduce uncertainties that
grow more pronounced at smaller scales. Simulating these effects using traditional hy-
drodynamic methods is computationally intensive and time-consuming. To address this,
a method called baryonification [65] has been developed. This approach models baryonic
feedback by transforming the density distribution from dark matter-only simulations into
one that accounts for baryonic effects. The baryonic feedback is incorporated by adjusting
particle positions in snapshots of dark matter-only n-body simulations. The density field
is described as a combination of dark matter halos influenced by 1-halo and 2-halo terms.
The dark matter-only (dmo) field is expressed as:

ρdmo (r) = ρNFW (r) + ρ2h (r) , (6.5)

where ρNFW represents a generalized Navarro-Frenk-White (NFW) profile [66], which de-
pends on the halo’s virial mass M ≡ M200 and concentration c ≡ c200, defined within
a radius where the density is 200 times the average density. The baryonification model
(dmb) modifies the 1-halo term to include contributions from collisionless matter (clm),
gas (gas), and the central galaxy (cga). The ρclm term primarily represents dark matter
but also includes satellite galaxies and intercluster stars. The total baryonified density is
then given by:

ρdmb (r) = ρclm (r) + ρgas (r) + ρcga (r) + ρ2h (r) . (6.6)
The baryonification process transforms the density ρdmo into ρdmb by first calculating the
integrated mass profile within a radius r:

Mχ (r) =

∫ r

0

s2ρχ (s) ds . (6.7)

This profile is a bijective function, enabling the definition of a displacement function as:

d (rdmo|M, c) ≡ rdmb (M)− rdmo (M) . (6.8)

To apply the baryonification model to projected data, CosmoGridV1 employs an efficient
method called shell baryonification [48]. Instead of modifying particle positions in 3D,

76



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

Convergence full sky map

-0.00492927 0.104349WL

(a) Convergence map

Intrinsice Alignment full sky map

-0.000365534 3.15705e-05IA

(b) Intrinsic Alignment map

Figure 6.5: Projected fields of the convergence and intrinsic alignment full-sky maps. The
maps are generated using lightcone construction and the Born approximation based on
CosmoGridV1 N -body simulations of resolution NSIDE = 512. Visualization is done
using the healpy package [63], with a histogram-based color normalization to enhance
contrast.
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this method calculates a projected displacement function based on the difference between
baryonified and dark matter-only profiles and applies it to 2D shell particle count maps.
The projected integrated mass profile is computed as:

Mp
χ (r) = 2π

∫ r

0

s

∫ zmax

0

ρχ (s, z) dzds , (6.9)

with zmax = 50r. The projected displacement is then given by:

dp (rdmo|M) = rdmb (M
p)− rdmo (M

p) . (6.10)

This displacement is applied to pixel positions using interpolation, effectively redistribut-
ing mass to account for baryonic effects, such as the suppression of central halo densities
and the redistribution of matter to larger radii. In CosmoGridV1 simulation, the baryonic
feedback is already incorporated into the simulation and thus we do not have to modify
this manually.

6.3.2 Intrinsic alignment
In weak lensing studies, the shapes of distant galaxies are used to infer the underlying
matter distribution through the shear field. However, the observed shear is not only
affected by the foreground matter distribution, but also contaminated by the intrinsic
ellipticities of galaxies. This arises from the fact that galaxies do not orient themselves
randomly with respect to the large-scale structure gravitational potential in which they
form — a phenomenon known as intrinsic alignment (IA). Tidal gravitational fields can
induce correlations in galaxy orientations, independent of lensing. These alignments in-
troduce spurious correlations that can mimic or bias the cosmic shear signals, posing a
significant challenges for precision cosmology.

To mitigate IA contamination, several theoretical IA models have been proposed in the lit-
erature, such as Linear Alignment (LA) Model [67], Non-Linear Alignment (NLA) Model
[68, 69, 70] and Perturbation theory-based model [71, 72]. In LA model, intrinsic shape of
a galaxy is assumed to be linearly related to the large-scale tidal field present during its
formation. By incorporating the non-linear matter power spectrum, the NLA model is
able to account for the non-linear evolution of the tidal field. A more complicated pertur-
bation theory-based model uses perturbation theory of structure formation and the bias
expansion for cosmological tracers, like Tidal Alignment Tidal Torque (TATT) Model [73].
The TATT model further extends this framework by combining two physical mechanisms:
tidal alignment, which dominated for elliptical galaxies, and tidal torquing, which affects
disk galaxies through angular momentum acquisition. This more flexible formulation al-
lows the TATT model to capture a broader range of galaxy alignment behaviors and has
become increasingly important for modeling IA in tomographic cosmic shear studies.

When applying the IA model to the convergence maps, we directly add the IA convergence
maps into the simulation convergence with a random amplitude AIA:

κobs = κsim + AIA · κIA , (6.11)
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where κobs is the observed convergence, κsim is the simulated convergence, κIA is the IA
convergence, and AIA is drawn from a uniform distribution, U [−5, 5], with AIA = 0 for
fiducial cosmology.

A more mathematical explanation of how IA affects the observed shear is provided in
Appendix E. In the case of CosmoGridV1, it utilized NLA model to create IA convergence
maps using the WIA kernel as described in Eq. (6.3) and we need to add IA maps to weak
lensing convergence maps manually if we want to include this systematic effect.

6.3.3 Multiplicative bias
In weak lensing studies, the observed shear measurements can be systematically biased
due to the inaccuracies in the measurement process. One such systematic effect is the
multiplicative bias, which arises when the measured shear is systematically scaled by a
factor relative to the true shear. This bias can originate from various sources, including:

• Noise Bias: Measurements noise in galaxy shapes can lead to biased shear esti-
mates, especially when the noise is correlated with the galaxy’s ellipticity.

• Model Bias: Simplifications or inaccuracies in the methods used to fit galaxy
shapes can introduce systematic errors in the shear estimates.

• Selection Bias: The process of selecting galaxies for shear measurement can pref-
erentially include or exclude certain types of galaxies, leading to a biased sample.

The multiplicative bias is typically parameterized as:

γobs = (1 +m)γtrue , (6.12)

where γobs is the observed shear, γtrue is the true shear and m is the multiplicative bias
parameter. Accurate calibration of m is essential for precision cosmology, as even small
biases can affect the inferred cosmological parameters.

Since the CosmoGridV1 simulation does not account for this bias, we manually incor-
porate it in this project. To make the convergence maps more realistic and compara-
ble to DES Y3 data, we adopt the multiplicative bias parameters from the DES Y3
survey [50]. All the multiplicative bias coefficients follow the Gaussian distribution,
N (0.0063, 0.0091) , N (0.0198, 0.0078) , N (0.0241, 0.0076) , N (0.0369, 0.0076) for tomo-
graphic bins from the latest to the earliest redshift.

6.3.4 Shape noise
The convergence maps generated by CosmoGridV1 are free of noise, implying that the
galaxies in real observations are assumed to have perfectly circular intrinsic shapes, and
measurement uncertainties are ignored. However, in reality, galaxies possess intrinsic
ellipticities and are randomly oriented across the sky. This introduces what is known
as shape noise into the shear measurements, which subsequently affects the convergence
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maps.

In order to make the convergence maps more realistic and make the covariance matrix
more accurate for scattering transform, we need to add shape noise to the convergence
maps. The shape noise is generated by randomly sampling the intrinsic ellipticities of
galaxies, which are assumed to follow a Gaussian distribution with zero mean and a
standard deviation as follow:

σpix =
σe√

A · neff

, (6.13)

where σe is the corresponding shape noise parameter, A represents the area of each pixel
and neff is the effective galaxy number density (gal/arcmin2) in the pixel. The total
value is neff = 5.590 and σe = 0.268, and the values for each tomographic bin are
neff = [1.476, 1.479, 1.484, 1.461] and σe = [0.243, 0.262, 0.259, 0.301] from DES Y3 data
[50] for redshift from latest to earliest. And because of the resolution of CosmoGridV1
simulation, NSIDE = 512, the area A of each pixel is approximately 6.9× 6.9 arcmin2.

Since we could only observe shear fields and get the ellipticity data from galaxies, the
conclusion that the noise on shear field is the same on convergence field is not that
obvious. The detailed mathematical explanation could be found in Appendix E.2.

6.3.5 Photometric redshift uncertainty
Photometric redshift uncertainty is another systematic effect in weak lensing studies. In
observational cosmology, the redshifts of galaxies are often estimated using photomet-
ric methods, which rely on measurement of galaxy fluxes in multiple broad-band filters.
These photometric redshifts (photo-z) are less practice than spectroscopic redshifts, lead-
ing to uncertainty that can propagate into weak lensing analyses. The uncertainty in
photometric redshifts arises from several factors:

• Template Mismatch: The galaxy spectral energy distribution (SED) templates
used for photo-z estimation may not perfectly match the observed galaxies.

• Degeneracies: Different combinations of galaxy properties, such as age, metal-
licity, and dust content, can produce similar observed colors, leading to redshift
degeneracies.

• Photometric Errors: Measurements noise in the observed fluxes can introduce
scatter in the estimated redshifts.

• Catastrophic Outliers: In some cases, galaxies are assigned redshifts that are
significantly different from their true values due to misclassification or extreme de-
generacies.

Photometric redshift uncertainties affect weak lensing studies in several ways:

• Source Redshift Distribution: The uncertainty in photo-z leads to errors in the
estimated redshift distribution of source galaxies, which is critical for calculating
lensing kernels.
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• Tomographic Binning: Errors in photo-z can cause galaxies to be assigned to in-
correct tomographic bins, leading to biases in the inferred cosmological parameters.

• Bias in Shear Measurements: The lensing efficiency depends on the relative dis-
tances between the lens and source galaxies. Photo-z errors can bias this efficiency,
affecting the shear signal.

In the context of CosmoGridV1, photometric redshift uncertainties are already included
for grid cosmologies so we do not need to model this systematic effect manually. Their
distributions also follow the Gaussian distribution, N (0, 0.018), N (0, 0.015), N (0, 0.011),
N (0, 0.017) for small redshift bin to large redshift bin.

6.4 Projected maps

6.4.1 Fibonacci sphere sampling
In cosmology, the healpy [63] package is commonly used to visualize full-sky maps. These
maps are generated by arranging one-dimensional data in a specific order to produce a
two-dimensional representation on the sphere. However, for the scattering transform
method, which operates on two-dimensional maps, it becomes necessary to extract rect-
angle or square patches from these full-sky maps.

To make full use of the simulation as much as possible, using more data and leaving less
gaps, we use Fibonacci sphere method [74, 75] to generate evenly distributed samples
on the sphere. This method is based on the Fibonacci sequence and the golden ratio,
and we use this irrational number to generate angular steps, ensuring quasi-uniform and
non-repetitive coverage of the sphere. The detailed discussion about Fibonacci sphere is
shown in Appendix F.

Using the evenly distributed points on the sphere, we can extract square maps from the
full-sky maps. The method employed here is the Gnomonic Projection [76], an azimuthal
map projection that maps the surface of a sphere onto a tangent plane from a single point
at the sphere’s center. The centers of these projections correspond to the points sampled
from the Fibonacci sphere. Fig. 6.6 demonstrate the extracted square maps from the
sphere.

6.4.2 Convergence maps
All the full sky maps, including convergence, IA and shape noise maps, are generated
using the same method. Fig. 6.7 shows the extracted maps from different sources. For
Fig. 6.7d, the mock map is generated by including multiplicative bias and adding IA map
and shape noise:

κmock = (1 +m) · (κsim + AIA · κIA) + κshape noise . (6.14)

Fig. 6.8 shows the distribution of convergence maps from weak lensing, intrinsic align-
ment and shape noise. As we can see, the noiseless weak lensing convergence map, the

81



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

(a) Side view (b) Top view

Figure 6.6: Illustration of the Gnomonic projection method. The left panel shows the
side view of the projection, where the right panel shows the top view. The yellow squares
represent the projected maps we extract from the full-sky maps. Each pixel equals to the
resolution of NSIDE = 512, which is about 6.9 arcmin. There are 86 pixels for each
side of the square. The total size of the square map is 9.85° × 9.85°. The side of the
square makes an angle of 27.7° with the horizontal axis or the equator. These parameter
settings make maximal use of the simulation data, with 260 squares in each full-sky map
and covered area of 61.1% without any overlapping.

distribution peaks at some underdense region, with a long tail on the overdense region.
While the intrinsic alignment holds an opposite distribution, with a peak at the overdense
region and a long tail on the underdense part. What’s more, the magnitude of intrinsic
alignment is much smaller compared to weak lensing maps. For Fig. 6.8c, it demonstrate
the distribution of the Gaussian shape noise and the mock data. Due to the fact that
multiplicative bias and intrinsic alignment are included, the distribution of the mock data
is slightly shifted compared to the Gaussian field. But their distributions are still similar,
indicating that the shape noise dominates in all systematic effects.
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Figure 6.7: Demonstration of the square maps extracted from different sources. (a) is
the noiseless weak lensing convergence map from simulation fiducial cosmology, (b) is the
intrinsic alignment map, (c) is the Gaussian noise map, and (d) is the map with shape
noise, intrinsic alignment included on the simulation mass map, where the strength of
the intrinsic alignment is selected to be AIA = 3. All the maps are generated within the
latest redshift bin.
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Figure 6.8: Distribution of the different maps. (a) is the distribution of the noiseless weak
lensing convergence directly from simulation of fiducial cosmology, (b) is the distribution
of the intrinsic alignment convergence, and (c) is the distribution of the pure shape noise
and mock map. For the mock map, multiplicative bias, intrinsic alignment and shape noise
are all included. And the strength for the intrinsic alignment is chosen to be AIA = 3.
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Chapter 7

Cosmological parameter constraints
with Fisher matrix and MCMC

Having established the theoretical framework and prepared the simulated datasets, we
now turn to the core data analysis, aiming to constrain cosmological parameters based
on weak lensing convergence field. Our focus is on leveraging the scattering transform
to extract high-order statistical information from convergence maps, which serves as the
basis for cosmological inference. A key object is to assess how effectively the scattering
coefficients, combined with emulator predictions, can constrain the parameters.

This chapter is structured as follows. In Section 7.1, we will show scattering coefficients
as well as scattering transform based power spectrum. In Section 7.2, we demonstrate
the parameter uncertainty with Fisher forecast and in Section 7.4 we will show the cos-
mological constraints with scattering transform.

Before delving into the specifics of the aforementioned methods, we first define some
common notations used throughout this chapter: the n-dimensional vector of data is
represented as x, with components x1, x2, . . . , xn. This data set is modeled by a theo-
retical function that depends on a vector of model parameters θ = (θ1, θ2, . . . , θn) in a
known manner. The model M , which is employed to fit the data x, produces predictions
represented by another n-dimensional vector µ, with components µ1, µ2, . . . , µn.

7.1 Summary statistics

7.1.1 Scattering coefficients
With the square maps of weak lensing convergence well prepared, we can now apply scat-
tering transform operation on them, which generates a series of scattering coefficients
under different cosmology scenarios. The visualization of these coefficients below demon-
strates the scattering transform’s ability to capture the underlying structure of the data.

First, we applied scattering transform operation on square maps of size 300 by 300 pixel2.
Each pixel has an area of 8× 8 arcmin2, which is slightly lower than the resolution of the
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simulation. Thus, for each square map, it covers 40° × 40° area. We could maximally
extract 15 non-overlapping square maps from one full-sky map. 7 realizations (since there
are only 7 realizations for each grid cosmology) of full-sky maps are used to generate 105
square maps for the scattering transform. All the maps here are noiseless weak lensing
convergence maps generated directly from simulations without including any systematic
effects. The scattering transform is performed with J = 8, L = 4, meaning that we are
extracting information from 8 different scales, and the 4 orientations of the wavelets.

Fig. 7.1 shows the scattering coefficients calculated from maps mentioned above with dif-
ferent cosmological parameters. As we can see, the scattering coefficients have similar
patterns in both figures, but the magnitudes of the coefficients are different. This indi-
cates that the scattering coefficients are sensitive to the cosmological parameters.

The blue dots are the zeroth order coefficients. Since it represents the spatial average of
the square maps, it is supposed to be zero theoretically. However, due to the finite size
of the maps, the zeroth order coefficient is not exactly zero. Besides, the error bar of
the zeroth order is relatively large, because we could only calculate one zeroth order coef-
ficient from a single map, then limited number of realizations leads to such large error bar.

For the first order coefficients, seen as orange dots in the figure, they are the spatial aver-
age of the first order convolved field with filter size increasing from left to right. Since the
scattering convolution is a pixel level weighted average, bigger filters cover more pixels,
which leads to a smoother field after convolution, gradually erasing the large clustering
and underdense. Therefore, the first order coefficients are expected to be smaller and
smaller as the filter size increases. The error bars of the first order coefficients are rela-
tively small compared to the zeroth order coefficient, because first order coefficients are
the mean value of first order convolved fields, and each value in the pixel is a weighted av-
erage of many pixels in the original map, causing a smaller difference of pixels compared
to the zeroth order coefficient. The magnitude of first order coefficients in the second
figure is smaller than the first one but its error bar is larger. This might be due to the
fact that the second cosmology, because of greater value of σ8, has a greater clustering
effect, which leads to larger clusterings or underdense in the map. The absolute value at
each pixel, even though after the filter, still varies a lot from regions to regions.

Then, for the second order scattering coefficients, they are calculated from the second or-
der convolved fields which are just another convolution of the first order convolved fields.
The second order coefficients also have similar patterns in both figures, but the magni-
tudes here are quite similar. This is because some extreme values in the original maps
have been smoothed out by the first order convolution, then the second order convolution
further smooths the first order convolved fields, which is the reason why the second order
coefficients have similar magnitude. This also accounts for second order coefficients are
expected to be smaller than the first order coefficients. Besides, the error bars of the
second order coefficients are much smaller than previous, this could be explained by the
smoothed fields as well.

86



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

0 5 10 15 20 25 30 35
Features

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Sc
at

te
rin

g 
Co

ef
fic

ie
nt

 V
al

ue
s

m = 0.26 , 8 = 0.84 , w0 = 1.00 , ns = 0.96 , b = 0.05 , H0 = 67.30 km
s Mpc

0th order
1st order
2nd order, j1 = 0
2nd order, j1 = 1
2nd order, j1 = 2
2nd order, j1 = 3
2nd order, j1 = 4
2nd order, j1 = 5
2nd order, j1 = 6

(a) Cosmology I

0 5 10 15 20 25 30 35
Features

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Sc
at

te
rin

g 
Co

ef
fic

ie
nt

 V
al

ue
s

m = 0.18 , 8 = 1.01 , w0 = 0.57 , ns = 0.94 , b = 0.05 , H0 = 65.97 km
s Mpc

0th order
1st order
2nd order, j1 = 0
2nd order, j1 = 1
2nd order, j1 = 2
2nd order, j1 = 3
2nd order, j1 = 4
2nd order, j1 = 5
2nd order, j1 = 6

(b) Cosmology II

Figure 7.1: Scattering coefficients for two different cosmologies, shown in the top and
bottom panels, respectively. Cosmological parameters are listed above each plot. All
coefficients are computed from noiseless weak lensing convergence maps of the same to-
mographic bin. The x-axis indexes the scattering features: one zeroth-order (blue), eight
first-order (orange), and 28 second-order coefficients (colored by j1). Second-order coef-
ficients are grouped by the scale of the first filter (j1), and vary by the second filter j2.
For example, green points correspond to j1 = 0 with varying j2. The y-axis shows the
coefficient magnitude, with error bars denoting standard deviations. Both panels share
the same y-range. 87
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Fig. 7.2 demonstrates the scattering coefficients of fiducial cosmology in different tomo-
graphic bins using 200 realizations. As expected, the zeroth order coefficients from all
tomographic bins are much more closer to zero than the previous figures with only 7
realizations. For higher redshift data, they have higher values of scattering coefficients.
This could be explained by the fact that the projection of distribution of matter in higher
tomographic bin has a wider profile in their PDF than late universe, shown in Fig. 6.4b.
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Figure 7.2: Scattering coefficients from different tomographic bins, shown on a logarithmic
y-axis due to their wide dynamic range. Bins from 0 to 3 correspond to increasing redshift.
The x-axis represents the number of scattering coefficients. J = 8 is chosen here, we have
1 for zeroth order, 8 for the first order and 28 for the second order coefficients. Error bars
represent the standard deviation of the coefficients.

7.2 Fisher matrix analysis
The objective of parameter estimation is to infer the probability distribution of the model
parameters θ based on a given data set x. In the framework of Bayesian statistics, this
probability density reflects the degree of confidence in a specific parameter vector. This
posterior probability distribution is given by [77]:

P (θ|x) , (7.1)

which can be used to compute expectation values, maximum posterior estimates, and
parameter uncertainties.
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With Bayes’s theorem, the posterior probability distribution can be expressed as [77]:

P (θ|x) = P (x|θ)P (θ)
P (x)

, (7.2)

where P (x|θ) is the likelihood function, P (θ) is the prior probability distribution, and
P (x) is the evidence. The evidence is a normalization constant that ensures the posterior
distribution integrates to one. Usually, the evidence is computationally expensive to
calculate due to the high dimensionality of the parameter space:

P (x) =

∫
P (x|θ)P (θ)dθ , (7.3)

and it is not necessary for parameter estimation since it just rescales the posterior distri-
bution and has nothing to do with the shape of the posterior. Thus, we can ignore the
evidence and just focus on the likelihood function and the prior probability distribution.
Then prior is the probability distribution of the parameters before observing the data. It
represents our beliefs about the parameters based on previous knowledge or assumptions.
If we have no prior knowledge about the parameters, we can use a uniform prior, which
assigns equal probability to all possible values of the parameters within a certain range.
And this is usually uninformative and called flat prior.

Likelihood is the probability density function describing the data distribution given the
parameters. It is also a function of the parameters when observed data is given, and
it measures how well the model with parameters θ explains the data x. The likelihood
function is defined as [78]:

P (x|θ) ≡ L (x;θ) . (7.4)
If flat prior is applied, the posterior distribution is proportional to the likelihood function:

P (θ|x) ∝ L (x;θ) , (7.5)

which implies that we can focus solely on the likelihood function to analyze the posterior
distribution, as this does not alter the relative probabilities of the parameters. Therefore,
inside the range of prior, the posterior distribution is proportional to the likelihood while
outside the range of prior, the posterior distribution is zero.

An very important method to probe likelihood distribution is Fisher information matrix,
which is a measure of the amount of information that an observed random variable set
carries about the parameters θ, written as:

Fij ≡
〈

∂2L
∂θi∂θj

〉
, (7.6)

where L = − lnL, and the indices i and j correspond to the parameters. The ensemble
average is computed with respect to the likelihood in the data space. To better understand
the physical significance of the Fisher matrix, we first define the maximum likelihood esti-
mator (MLE) θ̂, which represents the parameter vector θML that maximizes the likelihood
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function within the parameter space for a given data set x. Additionally, we focus on the
regions surrounding θML, as these regions coincide with the peak areas of the posterior
distribution under the assumption of a flat prior.

To show some good properties of Fisher matrix, we can expand the log-likelihood function
around the maximum likelihood parameter θML using Taylor expansion:

L (x;θ) ≈ L (x;θML) +
1

2

∑
i,j

(θi − θi,ML)
∂2L
∂θi∂θj

(θj − θj,ML) |θML
+O

(
θ3
)
, (7.7)

where the first order derivative, ∂L/∂θi, with respect to each parameter θi vanishes at the
maximum likelihood point because the likelihood reaches the maximum at θML the slope
goes to zero at that point. Thus, the log-likelihood function is basically characterized by
the quadratic term of θ. Changing the log-likelihood back to the likelihood, we have:

L (x;θ) ≈ exp (−L) (7.8)

≈ L (x;θML) exp

[
−1

2

∑
i,j

(θi − θi,ML)
∂2 (− lnL)

∂θi∂θj
(θj − θj,ML) |θML

+O
(
θ3
)]

,

(7.9)

which is a Gaussian distribution with respect to the parameters θ centered at θML with
L (x;θML) acting as a scaling factor. Furthermore, we could re-formulate the this equation
using the standard expression of multivariate Gaussian distribution by setting:
and the inverse covariance matrix is given by the Fisher matrix:

C−1
ij = −∂

2 (lnL)

∂θi∂θj
. (7.10)

Therefore, the Fisher matrix can be interpreted as the expectation value of the inverse
parameter covariance matrix at θML. Consequently, the inverse of the Fisher matrix
serves as an estimate of the parameter covariance matrix. The diagonal elements of this
covariance matrix represent the variance of individual parameters, while the off-diagonal
elements capture the covariance between different parameters, indicating the degree of
correlation among them.

When the parameter uncertainties are small, corresponding to a small covariance ma-
trix and large Fisher matrix values, Eq. (7.9) shows that even a slight deviation of θ
from θML results in a significant reduction in the likelihood function. This implies that
the posterior distribution is well-approximated by a multivariate Gaussian distribution.
The inverse parameter covariance matrix reflects the curvature of the likelihood surface
at θML. A large Fisher matrix value indicates that the likelihood is highly sensitive to
changes in the parameter, signifying that more information is available. Conversely, a
small Fisher matrix value suggests that the likelihood remains relatively constant across
the parameter space, indicating less information. Furthermore, Eq. (7.9) demonstrates
that under the Gaussian approximation, the likelihood surface is effectively characterized
by the parameter covariance matrix, making it a key determinant of the uncertainty in
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parameter estimation [79].

We assume that the data x follow a multivariate Gaussian distribution with the data
covariance matrix C and the mean µ predicted by a model M . This is a reasonable
assumption since x is usually the average over large amount of observational result, each
of these independent observations should follow an identical distribution and should follow
a Gaussian distribution by central limit theorem. Thus, the likelihood function can be
expressed as:

L (x;θ) =
1√

(2π)n|C|
exp

[
−1

2
(x− µ)T C−1 (x− µ)

]
. (7.11)

By taking the logarithm of the likelihood function, and ignoring the constant term, we
have:

lnL (x;θ) = −1

2
(x− µ)T C−1 (x− µ) . (7.12)

Then, take the derivative of the log-likelihood function with respect to one parameter θi:

∂ lnL

∂θi
=

1

2

(
∂µ

∂θi

)T

C−1 (x− µ) +
1

2
(x− µ)T C−1 ∂µ

∂θi
. (7.13)

By taking another derivative with respect to θj, we have:

∂2 lnL

∂θi∂θj
=

1

2

(
∂2µ

∂θi∂θj

)T

C−1 (x− µ)

− 1

2

(
∂µ

∂θi

)T

C−1 ∂µ

∂θj

− 1

2

(
∂µ

∂θj

)T

C−1 ∂µ

∂θi

+
1

2
(x− µ)T C−1 ∂2µ

∂θi∂θj
.

(7.14)

After taking the average over the data space, the first and last term vanish because the
average of the data x is equal to the mean µ, and due to the symmetry of the covariance
matrix, the final expression for Fisher matrix is [80]:

Fij =

〈
∂2 lnL

∂θi∂θj

〉
= −

(
∂µ

∂θi

)T

C−1

(
∂µ

∂θj

)
. (7.15)

As we can see in Eq. (7.15), Fisher matrix depends on only the theoretical modeling and
its parameters. So no actual data is required to calculate the Fisher matrix and the goal
of Fisher matrix is to obtain a forecast of parameter uncertainties before any data is
collected. Fisher forecast gives the best possible estimate according to the Cramer Rao
bound.
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7.2.1 Covariance estimation
In the framework of Fisher analysis, the data set utilized consists of scattering coefficients
calculated from the CosmoGridV1 simulations. The parameter vector includes six distinct
parameters, θ = (Ωm, σ8, w0, ns, H0,Ωb). Predictions µ for the data vectors are generated
through scattering transform modeling. Based on Eq. (7.15), we now need to estimate
the covariance matrix of the scattering coefficients.

Given the critical importance of an accurate covariance matrix for parameter estima-
tion, various methods have been developed to compute it, tailored to the characteristics
of different statistical techniques. Some approaches rely on analytical methods, such as
model-independent modeling [81] or Gaussian and non-Gaussian decomposition [82]. Oth-
ers estimate the covariance matrix directly from observational data [83]. In this study,
we adopt a simulation-based approach to calculate the covariance matrix.

The estimator of covariance matrix is given by:

Ĉ =
1

N − 1

N∑
i=1

(xi − x̄) (xi − x̄)T , (7.16)

where N is the number of independent realizations. For each realization, it produces a
data vector xi of scattering coefficients, and the average of the data vector is given by:

x̄ =
1

N

N∑
i=1

xi . (7.17)
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Figure 7.3: Data covariance matrix of scattering coefficient at fiducial cosmology within
latest tomographic redshift bin. Here the matrix is shown in logarithmic scale. The
underlying cosmological parameters are Ωm = 0.26, σ8 = 0.84, w0 = −1, ns = 0.9649,
H0 = 67.3 km/s/Mpc, and Ωb = 0.0493. This data covariance matrix is estimated from
noiseless weak lensing convergence maps.
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In this Fisher analysis section, we estimate the data covariance matrix from scattering
coefficients calculated from square maps generated from CosmoGridV1 simulation. The
square maps here have a size of 86 by 86 pixel2, and each pixel has an area of 6.9 × 6.9
arcmin2. So, the area of each square map is 9.85° × 9.85°. We can extract 260 non-
overlapping square maps from one full-sky map. There are 200 different realizations of
full-sky maps with the same cosmological parameters. Thus, we have 52, 000 square maps
in total for scattering coefficients calculation.The parameters for scattering transform are
set to J = 8 and L = 4, which means that we are extracting information with filters of
8 different scales and 4 different orientations. So the total scattering coefficients have 1
zeroth order coefficient, 8 first order coefficients and 28 second order coefficients. Fig. 7.3
shows the estimated data covariance matrix. Since we have assumed that the data covari-
ance matrix does not depend on parameters, we choose to compute this data covariance
matrix at the fiducial cosmology without ant noise or systematic effects included.

In Fig. 7.3, each pixel represents one entry in the data covariance matrix. Index 0 denotes
the zeroth order scattering coefficients, indices from 1 to 8 are the first order scattering
coefficients, and indices from 9 to 36 are the second order scattering coefficients. So
the matrix has a size of 37 × 37. Since the scattering coefficients cover different orders
of magnitude, we show the covariance matrix in logarithmic scale. The diagonal ele-
ments represent the variance of each scattering coefficient, while the off-diagonal elements
represent the covariance between different coefficients. To better show the correlation
between different scattering coefficients, we calculate the Pearson correlation coefficients
matrix which is based on data covariance matrix but normalized by the variance of each
coefficient:

corr (X,Y ) =
cov (X,Y )

σXσY
, (7.18)

where X and Y are two random variables from the data vector, cov (X,Y ) represents
their covariance, and σX and σY denote their respective standard deviations. The cor-
relation coefficient quantifies the degree to which changes in one variable are associated
with changes in the other. Fig. 7.4 shows the how strong the correlation is between dif-
ferent scattering coefficients under noiseless and noisy condition. For noiseless data, we
could see the strong correlation between different scattering coefficients. Since the second
order scattering transform is just another convolution based on the first order scattering
transform, it is expected that the second order coefficients are highly correlated with the
first order coefficients under the same first order wavelet filters. If we add systematics to
the maps, the correlation between different coefficients is still strong for those with big
first and second order wavelet filters. This is because big filters cover large areas when
doing convolution, and they are more stable to the systematic effects and Gaussian shape
noise, while the small filters capture only very localized information, and they are more
sensitive to the systematic errors.

After computing the data covariance matrix, the next step is to estimate its inverse, known
as the precision matrix. However, directly inverting the data covariance matrix introduces
bias, as discussed in [84]. The sample variance obtained from the direct inversion of Ĉ
fluctuates around the true variance but is constrained to remain above zero. When Ĉ
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is inverted, some sample variance values that are close to zero can become arbitrarily
large. Since there are no corresponding compensating small values, the resulting precision
matrix estimator becomes biased upwards [79]. The bias can be corrected by the following
equation:

Ĉ−1 =
N −D − 2

N − 1
Ĉ−1 , (7.19)

where Ĉ−1 is the unbiased estimator in the inverse covariance matrix, N is the number
of realizations, D is the dimension of each data vector, and Ĉ is the sample covariance
matrix.

In [80], the authors show that the inversion of Fisher matrix also introduce some bias
to the uncertainty of the covariance matrix of parameters. In order to reduce this bias,
another correction factor should be applied to the inverse Fisher matrix:

Cparam =

(
1 +

(D −Np) (N −D − 2)

(N −D − 1) (N −D − 4)

)
· F−1 , (7.20)

where Np is the number of parameters to be constrained.
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Figure 7.4: Left panel is the correlation matrix calculated from Fig. 7.3. The right
panel is the correlation matrix calculated from maps that include intrinsic alignment,
multiplicative bias, and shape noise with the same cosmological parameters as the left
one. Both of these are calculated from tomographic bin 0.

7.2.2 Fisher forecast
Together with Eq. (7.15), (7.16) and (7.19), we could compute the Fisher matrix. In the
case of this project, we calculate the derivatives with respect to the parameter using the
following equation:

∂µ

∂θi
=

µ (θfid + δθi)− µ (θfid − δθi)

2δθi
, (7.21)
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where θfid represents the parameters of fiducial cosmology, θi is the change of i-th pa-
rameter with respect to the fiducial cosmology while keeping other parameters fixed at
fiducial values, and µ denotes the scattering coefficients at the corresponding cosmology.
The value of δθ is listed in Table 6.1.

Fig. 7.5 illustrates the 1σ Fisher forecast for the parameters Ωm and σ8. The contours
in the two-dimensional parameter space are elliptical, consistent with the assumption of
a Gaussian likelihood function in the parameter space. The gray contour represents the
forecast using the power spectrum, while the green contour corresponds to the wavelet
power spectrum defined in Section 4.2.5. Their similar orientation and size indicate that
the wavelet power spectrum is consistent with the traditional power spectrum. The blue
contour, derived from the first-order scattering coefficients, exhibits a similar orientation
to the gray contour, suggesting that the first-order coefficients capture comparable infor-
mation to the power spectrum. The orange contour, based on de-correlated second-order
scattering coefficients, shows a distinct orientation due to the de-correlation operation
defined in Eq. (4.9). This implies that the second-order coefficients provide additional
information beyond the first-order coefficients. This could also be seen in the marginal-
ized distribution. First order coefficients capture more information about Ωm while the
de-correlated second order coefficients extract the slightly more information about σ8.
Finally, the red contour, which incorporates all scattering coefficients, yields the tightest
constraint, demonstrating the combined information extracted by all three orders of scat-
tering coefficients. Each square map has an area of 9.85° × 9.85°, 86 × 86 pixels2. The
parameters of scattering transform operation is chosen as J = 8, L = 4.

However, sometimes we are not interested in all the parameters that vary, and we only
want to focus on a few of them. In this case, we can marginalize the Fisher matrix over
the parameters we are not interested in. Suppose the full parameter space vector set is
p, which is a union o two parameter sets: p = q ∪ r, where q is the parameter set we are
interested in and r is the parameter set we want to marginalize. The full Fisher matrix
could be written as:

F =

[
Fqq Fqr

Frq Frr

]
. (7.22)

Then the marginalized Fisher matrix is given by:

Fmarg
qq = Fqq − FqrF

−1
rr Frq . (7.23)

7.2.3 Impact of resolution and shear
In the above discussion, we used scattering transform to extract information on noiseless
weak lensing convergence field at the resolution level of the simulation data. However, in
real observations, we could usually only obtain shear fields. Thus, in this subsection, we
will discuss the impact of resolution and shear field on Fisher forecast using scattering
transform.

Based on the noiseless simulation convergence full sky maps, we could use Eq. (3.42) to
generate full sky shear maps. Of course, the generated shear maps have the same cosmo-
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Figure 7.5: 1σ contour of Fisher forecast of Ωm and σ8. Black star is the fiducial values
of these two parameters. Grey contour is the forecast using power spectrum mentioned in
Appendix B. Green elliptical is the binned power spectrum using Eq. (4.22). Blue contour
is the forecast using only first order scattering coefficients. Orange Contour shows the
result using de-correlated second order scattering coefficients defined in Eq. (4.9). Red
contour demonstrates the forecast using all three orders of scattering coefficients. All these
data are calculated from noiseless weak lensing convergence maps in the latest redshift
bin.
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logical parameters as the corresponding convergence maps. Then we use the same method
to cut square maps from two shear full-sky maps and compute scattering coefficients on
both shear maps to get the scattering coefficients for shear:

sγ,total = concatenate (sγ,1, sγ,2) , (7.24)

where sγ,total represents the total shear scattering coefficients that we will use to generate
Fisher forecast, and sγ,1 and sγ,2 are the scattering coefficients calculated from two shear
maps respectively. Besides, the scattering coefficients on the are also computed on the
magnitude shear maps:

γ = |γ| e2iϕ . (7.25)
Fig. 7.6a illustrates the 1σ Fisher forecast derived from scattering coefficients of various
maps. All square maps used in this analysis have dimensions of 40°×40°, with a resolution
of 300 pixels by 300 pixels, where each pixel corresponds to 8 × 8 arcmin2. The results
indicate that the combined shear fields yield a tighter contour compared to a single shear
field, as the information from the original convergence field is distributed across the two
shear fields. However, when comparing the contours of the convergence field and the
shear field, it is evident that the convergence field provides a more constrained forecast
in the Ωm and σ8 parameter space. This suggests that the scattering transform method
is more effective on convergence maps, even though the shear maps are directly derived
from the convergence maps.

We further investigate the impact of pixel resolution and map area size on the scattering
transform, as illustrated in Fig. 7.6b. To ensure a fair comparison, we keep the total area
of the square maps constant while varying the pixel resolution, resulting in different pixel
counts per map. The red contour corresponds to square maps of 40.08° × 40.08° with a
resolution of 6.9× 6.9 arcmin2, yielding 350 pixels per side. The blue contour represents
square maps of 40° × 40° with a resolution of 8 × 8 arcmin2, resulting in 300 pixels per
side. This comparison demonstrates that, for maps covering the same area, increasing the
resolution or pixel count improves the forecast accuracy.

Additionally, we examine the effect of total map area on the scattering transform. The
red, purple, and orange contours correspond to maps with a resolution of NSIDE = 512
but varying total areas. These maps have pixel counts of 350, 100, and 86, corresponding
to areas of 40.08° × 40.08°, 11.45° × 11.45°, and 9.85° × 9.85°, respectively. The results
clearly show that larger map areas yield tighter constraints.

However, when applying the scattering transform, the maps must be square, which neces-
sitates the validity of the flat-sky approximation to ignore curvature effects. According to
the “Flat-sky approximation” section in [85], the largest area size suitable for this approx-
imation is approximately 10° × 10°. Therefore, performing the scattering transform on
convergence maps of size 10°×10° is the most reliable approach for extracting information
in weak lensing cosmology.
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Figure 7.6: Illustration of Fisher forecast on σ8 and Ωm plane using convergence field,
shear field, and different pixel numbers and resolutions.
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7.3 Emulator
Since now there is no analytical model for scattering transform and we can not calculate
scattering coefficients use some equations directly but use machine learning. Here we
will use a neural network-based emulator to predict cosmological parameters with given
cosmological parameters so that we have the model predicted value µ (θ) for the likelihood.

For the emulators in this project, we are using fully-connected neural network, with several
hidden layers. There are 2500 grid simulations with different cosmological parameters in
4 tomographic redshift bins, we thus use scattering coefficients calculated from these
simulations for machine learning work. For each tomographic redshift bin, we will set one
emulator for scattering coefficients prediction. 90% are set to be training sets and 10%
are set to be validation set for each tomographic bin. Since scattering coefficients are very
small and cover many different orders of magnitudes, seen in Fig. 7.2, we first take the
logarithm of the coefficients with base of 10 to make them have the same order before
putting them into trainings. To simplify the training process and make the emulators
more accurate, we do not use zeroth-order scattering coefficients, the mean value of the
square maps, as the training features. Before the training starts, we further standardize
the training features so that they have 0 mean and standard deviation of 1.

sstand =
s− s̄

σs
, (7.26)

where s represents the scattering coefficients here. For the activation function, we choose
Parametric Swish functions:

h (x) = (β + σ (αx) (1− β)) x , (7.27)

with
σ (αx) =

1

1 + e−αx
, (7.28)

where x is the output from previous layer and β and α both trainable parameters, just like
weight W and bias b in each layer. During the training process, we utilize the mini-batch
gradient descent method, choosing a small batch from the whole training set randomly to
calculate the gradient at each epoch. From the training set, we split 10% as the validation
set to calculate the loss function. To prevent overfitting, we set early stopping strategy and
save the model parameter whenever it gets a new minimum loss value from validation sets.

Fig. 7.7 shows the prediction of the scattering transform of one cosmology. The emulator
achieves high accuracy in reproducing the scattering coefficients, with most relative errors
remaining at the level of 10−3 and only a few features reaching up to 10−2. And this is
also understandable, since those features have very low magnitude, meaning that a little
deviation from the true values (here we assume the coefficients from simulations are the
true values) leads to a lot of difference. Across a dynamic range spanning five orders of
magnitude, the emulator closely matches the real data, demonstrating its robustness and
reliability for subsequent cosmological parameter inference.
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Figure 7.7: Demonstration of the emulation prediction on noisy maps. The left panel
shows the scattering coefficients calculated from simulation and that predicted from emu-
lator. The right panel exhibits the relative error of prediction compared to the real value.

To further quantify the error, we calculated the reduced χ2 [86, 87] for testing sets:

χ2
red =

(spred − ssim) ·C−1 (spred − ssim)
T

Ndof
, (7.29)

where spred is the prediction from emulator, ssim is the value calculated from simulation,
C is the covariance matrix estimated from fiducial cosmology with all systematic effects
included and Ndof is the degrees of freedom, which is 36 in this case. The reduced chi-
squared measures how well the predicted values match the true values, taking into account
the uncertainties via the covariance matrix. It tells us, on average per degree of freedom,
how large the normalized residuals are. A value of χ2

red ∼ 1 indicates that the emulator
predictions are consistent with the simulation within the expected uncertainties. Values
significantly greater than 1 suggests that the emulator systematically deviates from the
true values, whereas values much smaller than 1 may indicate that the uncertainties are
overestimated.

Fig. 7.8 shows the values of reduced χ2
red trained on four tomographic bins with scattering

coefficients calculated from noisy maps. All of these four emulators have the mean value
of χ2

red very close to 1 tested on testing sets. Because different random seeds are used
when splitting the whole data into training set and testing set, the distributions of the
dots are different in Fig. 7.8.

7.4 MCMC sampling
The Fisher forecast assumes a Gaussian likelihood distribution in the parameter space,
allowing for the prediction of parameter uncertainties without determining the maximum
likelihood location. Typically, the center of the Fisher forecast is chosen to coincide with
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Figure 7.8: Reduced chi-squared values of emulators for four tomographic redshift bins
on testing sets projected on Ωbary −Ωm plane. The color shows the values of χ2

red defined
in Eq. (7.29).
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the fiducial parameter values, as illustrated in Fig. 7.5.

Once observational data is available, numerical methods can be employed to explore the
posterior distribution of cosmological parameters, p (θ|x). This provides a comprehensive
view of the parameter distribution, enabling the identification of the maximum posterior
parameters and their corresponding uncertainties. In this section, we introduce a widely
used method for sampling the posterior distribution, known as Markov Chain Monte
Carlo (MCMC). We will first explain the concept and advantages of MCMC, followed by
its application in conjunction with a neural network-based emulator.

As a probability distribution, the posterior satisfies the following properties [88]:

p (θ|x) > 0 for all θ , (7.30)∫
p (θ|x) dθ = 1 , (7.31)

where the first property ensures that the posterior probability is always non-negative
across the parameter space, and the second property guarantees that the total probability
over all possible parameter values sums to 1. However, due to the high dimensionality
of the parameter space in models with multiple free parameters, calculating posterior
statistics, such as the expectation value, can be computationally demanding:

E [θ] =

∫
θ · p (θ|x) dθ , (7.32)

where the integration spans the entire parameter space.

The MCMC method provides a solution to this challenge by generating a sequence of
samples from the posterior distribution. The key idea is to use these samplings to ap-
proximate the posterior distribution, allowing us to compute posterior statistics without
the need for direct integration.

E [θ] ≈ 1

N

N∑
i=1

θi , (7.33)

where N is the number of samples drawn from the posterior distribution, and θi repre-
sents the i-th sample from N .

A Markov chain is a stochastic process that describes a sequence of random variable
evolving over discrete steps, where the distribution of the next state depends only on the
current state and not on the full history. Mathematically, this property, known as Markov
property, can be expressed as:

p (θn+1|θn,θn−1, . . . , θ1) = p (θn+1|θn) , (7.34)

where θn denotes the state of the system at sampling step n. Here p is the transition
probability that governs the evolution between consecutive states. It defines the proba-
bility of moving from the current parameter vector θn to a new vector θn+1. The Markov
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property implies that, after a sufficiently large number of steps, the influence of the initial
state θ1 becomes negligible, and the chain’s behavior depends only on the current state.
This feature is crucial because it ensures that once the Markov Chain reaches equilibrium,
the samples generated are effectively independent of the starting point and can be used
to explore the target probability distribution efficiently.

In practice, sampling from a complex distribution is achieved by evolving a Markov Chain
according to a carefully designed transition probability. The aim is to ensure that, regard-
less of the initial distribution of the random variable θ1, the distribution of later samples
θn converges to the desired target distribution. This convergence relies on certain prop-
erties of the transition probability, among which detailed balance plays a fundamental
role. The detailed balance condition is defined as:

p (θn|θn+1π (θn+1)) = p (θn+1|θnπ (θn)) , (7.35)

where π (θ) is the target distribution we wish to sample from. When the transition kernel
satisfies detailed balance and other conditions such as ergodicity, the stationary distribu-
tion of the Markov Chain becomes exactly the target distribution π (θ). In other words, if
the chain has already reached the target distribution at step n, it will remain equilibrium
under the transition dynamics.

In the context of Bayesian inference, the posterior distribution p (θ|x) is of primary in-
terest, where x denotes the observed data. According to Bayes’s theorem:

p (θ|x) = p (x|θ) p (θ)
p (x)

, (7.36)

where p (x|θ) is the likelihood, p (θ) is the prior and p (x) is the evidence. MCMCmethods
utilize Markov Chain to generate samples distributed according to p (θ|x). By running the
chain for a sufficient number of steps and ensuring appropriate transition dynamics, the
sequence of samples produced can be estimate expectations, credible intervals, and other
posterior properties of parameters under study. Thus, the combination of the Markov
property, careful design of transition probabilities, and the Monte Carlo approach enable
MCMC to serve as a powerful tool for posterior inference in complex, high-dimensional
parameter spaces.

7.4.1 Prior
As mentioned before, many MCMC methods are proposed for sampling. The simplest one
is Metropolis-Hastings algorithm [89]. Hamiltonian Monte Carlo (HMC) [90] is also an
efficient MCMC method using on Hamiltonian dynamics to do the sampling and leapfrog
for integration. And in this work, we will use affine invariant sampling MCMC method
based on a python package emcee [91] but a torch and GPU accelerated version.

For the posterior distribution, since we focus only on the shape of this distribution and
the evidence term is only used for normalization and scaling the posterior, we will ignore
this term and work on only prior and likelihood. Usually we work with the logarithm of
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probabilities to improve numerical stability and to simplify the calculation of acceptance
ratios, as difference of log-probabilities are easier and more accurate to compute than
ratios of very small numbers:

ln p (θ|x) = ln p (θ) + lnL (x|θ) . (7.37)

For the prior, we adopt the flat distribution for the parameters varying in CosmoGridV1
simulations. The detailed distributions are listed in Table 7.1. For ns,Ωb, H0, AIA, we
have a square flat distribution as also shown in Fig. 6.1, while for Ωm, σ8, w0, we have
some cuts from the square flat distribution to match the sampling space of CosmoGridV1
grid simulations as mentioned in Chapter 6.

Parameter Fiducial Value Prior Distribution Additional Condition
Ωm 0.26 U(0.10, 0.50) See note (a)
σ8 0.84 U(0.40, 1.40) See note (a)
w0 −1.00 U(−2.00,−0.33) See note (b)
ns 0.9649 U(0.87, 1.07) -
Ωb 0.0493 U(0.03, 0.06) -
H0 67.30 U(64, 82) -
AIA 0 U(−5, 5) -
∆z1 0.0 N (0.0, 0.018) -
∆z2 0.0 N (0.0, 0.015) -
∆z3 0.0 N (0.0, 0.011) -
∆z4 0.0 N (0.0, 0.017) -
m1 −0.006 N (−0.006, 0.009) -
m2 −0.020 N (−0.020, 0.008) -
m3 −0.024 N (−0.024, 0.008) -
m4 −0.037 N (−0.037, 0.008) -

Table 7.1: Priors and additional constraints for cosmological and nuisance parameters.
U(a, b) denotes a uniform prior from a to b, and N (µ, σ) denotes a Gaussian prior with
mean µ and standard deviation σ. (a) (Ωm, σ8) are constrained to lie within a polygon
P defined by the vertices: (0.10, 1.40), (0.20, 1.40), (0.50, 0.65), (0.50, 0.40), (0.30, 0.40),
(0.10, 0.90). (b) w0 ≥ w0,min(Ωm) where w0,min(Ωm) satisfies

(
Ωm−1
Ωm

(1 + w0)
)1/(3w0)

= 1.

7.4.2 Likelihood
When the data involve the sum or average of many independent random variables, the
Central Limit Theorem says the result will tend to be approximately Gaussian, regardless
of the underlying distributions. Therefore, the mathematical expression of the likelihood
could be written as:

lnL (x|θ) = −1

2
(x− µ (θ))C−1 (x− µ (θ)) , (7.38)
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where x denotes the observed data, which, in our case, corresponds to the scattering coef-
ficients measured from the fiducial cosmology. The quantity µ represents the theoretical
prediction that depends on the cosmological parameters to be constrained, and it is ob-
tained by emulator predictions. The matrix C denotes the data covariance matrix, which
is estimated from simulations of the fiducial cosmology and is assumed to be independent
of cosmological parameters. Of course, we need to multiply the correction factor shown
in Eq. (7.19) [84] when calculating the inverse covariance matrix.
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Figure 7.9: Correlation matrix of the data vector s = (stomo0, stomo1, stomo2, stomo3), con-
structed from 200 realizations of the fiducial cosmology. Each block of 36 features cor-
responds to the first- and second-order scattering coefficients computed from maps in a
specific tomographic redshift bin. The indices are ordered by increasing redshift.

In a tomographic analysis combining four redshift bins, we obtain four sets of scattering
coefficients, leading to a data covariance matrix of larger dimensionality. Denoting stomon
as the set of first- and second-order scattering coefficients corresponding to the n-th tomo-
graphic bin, we construct the full data vector by concatenating the four sets sequentially
as s = (stomo0, stomo1, stomo2, stomo3). Consequently, the total length of the data vector
becomes 144, and the size of the associated data covariance matrix increases to 144×144.
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As expected, combining multiple redshift bins enhances the amount of information en-
coded in the resulting data covariance matrix, thereby enabling tighter parameter con-
straints compared to using the covariance from a single redshift bin alone. The correla-
tion matrix corresponding to the data vector from the tomographic analysis is shown in
Fig. 7.9. In this matrix, the four diagonal 36×36 submatrices correspond to the standard
correlation matrices for stomo0, stomo1, stomo2, stomo3 respectively. The off-diagonal blocks
capture the correlations between features originating from different tomographic bins.
And this is the covariance matrix for the likelihood.

7.4.3 Posterior
For the logarithm posterior distribution, it gives −∞ if the sampled parameter vector is
outside the bounds of the prior and return the sum according to Eq. (7.38) if the param-
eters are within the boundaries.

A critical aspects of MCMC analysis is verifying chain convergence to ensure reliable
posterior distributions. However, assessing convergence is not straightforward, especially
when the posterior contains multiple isolated high-probability regions connected by low-
probability bridges. In such cases, a sampler may require an impractically long time to
explore all significant modes of the distribution.

To address this, we use the integrated autocorrelation time τint, which estimates the num-
ber of steps needed for the Markov chain to produce an independent sample. When τint
is sufficiently small relative to the chain length, the sampled distribution reliably ap-
proximates the posterior. Following the emcee, we implement the following convergence
checks:

1. Evaluate the integrated autocorrelation time τint every 50 steps.

2. Denote the total length of the Markov Chain as τchain, and use a superscript i on
τint to indicate each computed value.

The Markov Chain is considered to have converged when the following two conditions are
met:

50× τ iint < τchain , (7.39)
τ i−1

int − τ iint
τ iint

< 0.01 . (7.40)

The first condition ensures that the chain is sufficiently long, allowing the MCMC walkers
to traverse the high-probability regions multiple times. The second condition requires that
the fluctuation in the estimated τint between successive measurements is small, indicating
that the chain has stabilized and convergence has been achieved.

We run 1000 independent Markov Chains whose initial positions are uniformly distributed
within the prior bound mentioned in Table 7.1 and end the sampling only when all the
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Figure 7.10: Trace plots of the MCMC chains for all four tomographic bins without
multiplicative bias and photometric uncertainty parameters. For each parameter, 20
independent Markov Chains are displayed simultaneously. The evolution of all chains is
terminated once the convergence criteria given in Eq. (7.39) and (7.40) are satisfied.
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chains converge.

Fig. 7.10 shows the trace plots of 20 chains for 7 cosmological parameters using all four
tomographic bins. In this plot, the values of parameters are plotted as a function MCMC
step numbers. From this figure, we can see that for most parameters, the chains begin
to converge after the first few thousand steps. And then the chains began to oscillate
in those regions. However, for some parameters such as σ8, the convergence is clearer
and more stable. Some chains appear stuck in the beginning before transitioning to
the high-probability region. This behavior is likely caused by unfavorable initializations
in low-likelihood regions, resulting in poor acceptance and preventing them from evolving.

This also reflects the limited constraining power on some parameters, especially when
systematic effects are included and all parameters are sampled simultaneously. Overall,
the trace plot shows good convergence behavior across bins.

The MCMC corner plots of all four tomographic bins and only tomographic bin 0 are
shown in Fig. 7.11. For the prediction of the scattering coefficients from the tomographic
bin 0, we used the same emulator in these two analysis. We chose 30000 steps as burn-in
phase for the 40000 total steps during which the MCMC chains do not depend on their
initial conditions gradually. The burn-in phase would be discarded before shown in the
corner plot.

From this figure, we can see that the constraints using four tomographic bins are much
tighter than using only one tomographic bin, indicating that more information is extracted
by using tomographic analysis. Also, distributions for Ωm and σ8 are much tighter com-
pared to other parameters and the fiducial values are lying within the 1σ credible regions
of the posterior distribution. This behavior is expected, as weak lensing primarily probes
the large-scale matter distribution and the growth of cosmic structures, which are most
directly governed by the matter distribution parameter Ωm and the fluctuation parameter
σ8. In contrast, parameters such as w0, ns, H0 and Ωb mainly influence the cosmic ex-
pansion history or the detailed scale dependence os structure formation, leading to much
weaker direct effects on the lensing observables.

Moreover, the intrinsic alignment amplitude AIA affects the observed shear signal through
galaxy alignment effect rather than through gravitational lensing itself, which further re-
duces the sensitivity of weak lensing measurement to this parameter. That’s why some
of these parameters have very flat posterior distributions. As for the nuisance systematic
effects, scattering transform does not have any constraining power on them. Besides, we
could also see that there are two cuts in Ωm−w0 and w0−σ8 plane, and this is caused by
the prior. Since we set the prior values outside the boundary to be zero and no walkers
could explore regions there.

In the following discussions, particularly regarding observational effects such as survey
masking, we will therefore focus on the parameters to which the scattering transform is
most sensitive: Ωm and σ8.
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Figure 7.11: Comparison of the MCMC constraints between multi tomographic bins and
single redshift bin. The blue contour is the result with all four tomographic bins while
the green contour shows the constraints using only earliest redshift bin. All emulators
used in MCMC are trained on maps with systematic effects. The parameter values and
uncertainties displayed above each marginalized posterior correspond to the blue contours
and histograms, which represent the results from the “Four tomographic bins” analysis.
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7.5 Handling masked data in scattering transform
framework

In the previous analysis, cosmological parameters constraints were obtained based on
simulation data incorporating systematic effects such as shape noise and intrinsic align-
ment. However, in practical observations, an additional complication arises due to the
presence of masks. Masks are applied to the data to exclude contaminated or unusable
regions, such as area affected by bright stars, foreground objects, or instrumental defects.
These masks introduce spatial incompleteness, which can significantly impact the mea-
sured weak lensing signal and, consequently, the derived cosmological constraints. To
ensure the robustness and applicability of our analysis to realistic survey conditions, it is
crucial to account for the effects of masking. In the following, we describe the methodol-
ogy for incorporating masked regions into the simulation data and analyze their influence
on the scattering transform and the resulting parameter constraints.

To better emulate the conditions of real surveys, we adopt a mask consistent with the
footprint of the Dark Energy Survey Year 3 (DES Y3) survey covers approximately 5000
square degrees of the southern sky with a complex and irregular geometry [50]. Applying
a realistic survey footprint allows us to mimic the spatial inhomogeneity encountered in
observational data. In Fig. 7.12, we show the footprint of DES Y3, where the masked
regions are clearly visible as gaps within the survey area.

Since scattering transform has to be operated on square maps, we need to extract square
maps from DES-like foot print as well. To reduce the bias caused by the masked pixels,
we carefully select non-overlapping square maps within the footprint, ensuring that at
least 98% of each selected region remains unmasked. This criterion helps to preserve the
integrity of the extracted features and minimizes contamination from incomplete areas,
leading to more reliable and unbiased results in the subsequent analysis. Fig. 7.13 indi-
cates the regions where we extract square maps from the DES Y3 footprint. And Fig. 7.14
demonstrates the extracted square map and its binary mask, where the yellow regions are
useful pixels and purple regions are masked pixels.

The scattering transform can be viewed as a type of convolution, or equivalently, a
weighted summation where the weights decay with increasing distance from the center
pixel. This means that even if the center pixel itself is unmasked, masked neighboring
pixels can still affect its value. Therefore, to obtain more accurate scattering coefficients
in the presence of masking, we aim to exclude contaminated pixels. Specifically, we select
pixels according to the following criteria:

• The center pixel must not be masked since the wavelet gives the highest weight for
the center pixels.

• If more than 5% of the neighboring pixels around a center pixel are masked, the
center pixel is also considered masked.

Here, the definition of “neighbor” requires further clarification:
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DES Y3 Footprint

0 1

Figure 7.12: DES Y3 Footprint of Tomographic bin 3. The yellow part represents the
observed regions while the purple part is the masked or unobserved regions.

1. We first sum the modulus of all wavelet filters of the same scale, which are basically
the Gaussian envelopes, but different orientations, as shown in Fig. 7.15, to obtain
an approximately isotropic filter that depends only on the distance from the center
pixel, rather than the direction.

2. We define the effective area of this combined wavelet filter as the region where the
filter values lie between the maximum value and 10% of the maximum value, shown
in Fig. 7.16.

As we can see, the wavelet filter becomes approximately isotropic after summing over
all orientations, and its effective region maintains a shape similar to that of the origi-
nal directional filters. Based on this observation, we present the final mask settings for
square maps at different scales, as shown in Fig. 7.17. These mask settings are derived
by extending the original mask shown in Fig. 7.14b according to the effective support of
each wavelet filter.

From the figure, we observe that for j = 0, the updated masked regions are nearly identi-
cal to the original. This is because the j = 0 wavelet filter has a very small effective area,
involving only the four immediate neighboring pixels around the center. As a result, the
mask extension is minimal.

For j = 1 to j = 3, the mask settings depend on the spatial distribution of the originally
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Extracted Full Sky Map

0 2

Figure 7.13: Extracted Full Sky Map. Purple indicates unobserved or masked regions,
while green and yellow together show the DES Y3 footprint. The yellow areas are the
square maps that have been extracted.
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Figure 7.14: Left panel: the extracted κ map from the DES Y3 footprint, with missing
regions masked. Right panel: the corresponding binary mask indicating observed pixels.
The yellow areas correspond to the extracted square maps within the DES Y3 footprint,
while the dark purple regions denote masked pixels.
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Figure 7.15: Symmetric wavelet filters in real space.
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Figure 7.16: Effective regions of wavelet filters shown in Fig. 7.15
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masked pixels. If the masked pixels are clustered, the effective mask region becomes sig-
nificantly larger due to overlap in the filter support. In contrast, if the originally masked
pixels are spatially isolated, the new mask remains nearly the same as the original.

For higher scales (j ≥ 4), the mask settings are exactly the same as the original mask.
This is because the wavelet filters at these scales have effective support that covers nearly
the entire square map, and the overall masking fraction is less than 2%, which falls below
the 5% threshold for excluding a pixel.

With all mask settings prepared, we can now proceed to the calculation of scattering
coefficients. In the original case without masking, the scattering coefficients are computed
by simply taking the spatial average of the modulus of the convolved field. However,
with masked pixels present, it is necessary to account for them by excluding masked
regions when performing the spatial averaging. A method proposed in Ref. [92] addresses
this by removing only the originally masked pixels. To further improve the accuracy
of the scattering coefficient calculation, particularly for small-scale wavelet filters, we
additionally exclude pixels that are surrounded by masked pixels, as discussed above.
Also, when calculating the second order scattering coefficients, we need to use two different
wavelet filters. If the pixel is set to be masked by any of the wavelet filter, then we assume
it’s to be masked when calculating the second-order scattering coefficients.

j = 0 j = 1 j = 2

j = 3 j = 4 j = 5

Figure 7.17: Mask settings for different wavelet filters.

Fig. 7.18 shows the comparison of scattering coefficients between true values and the
values calculated from different methods. From the figure, we could see that the relative
error decreases a lot for the small scales comparing to the method that only removes the
originally masked pixels when taking the spatial average, this is again because we remove
the unmasked pixels that are close to the originally masked pixels. To further quantify
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the error caused by the mask, we calculate the χ2 of these two methods:

χ2 = (smask − strue)C
−1 (smask − strue) /D.O.F , (7.41)

where smask is the scattering coefficients computed from masked maps while the strue
is the true value or the coefficients from unmasked square maps, and D.O.F is the de-
gree of freedom. The reduced χ2 for the blue dots are only about 1/7 of the green dots,
indicating the great improvement of the accuracy of the scattering coefficients calculation.
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Figure 7.18: Comparison of the scattering coefficients under different mask dealing
method. The left panel: blue dots are the mask setting method discussed in this sec-
tion, orange dots are assumed to be the real scattering coefficients that are calculated
from square maps without any mask and green dots are the result. The “Additional
Mask” here means that the pixels that are surrounded by masked pixels are set to be
masked as well.

Fig. 7.19 shows the MCMC constraints the marginalized posterior distributions of three
cosmological parameters, Ωm, σ8 and S8, obtained from MCMC sampling, where S8 is
defined in the following equation:

S8 = σ8

(
Ωm

0.3

)0.5

. (7.42)

Two cases are compared: one using convergence maps that contain masked pixels (green
contours and lines), and one using unmasked maps (blue). The masking is based on the
DES Y3 footprint and applied to the simulated maps to mimic realistic survey conditions.
The results are listed in Table 7.2.

We observe that the impact of masking is relatively minor. The overall shape and lo-
cation of the posteriors remain consistent between the two cases, with only a light shift
of the maximum a posterior position in the contours when masked pixels are included.
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Case Ωm σ8 S8

Fiducial 0.260 0.840 0.782

Without mask 0.282+0.056
−0.061 0.821+0.100

−0.098 0.795+0.045
−0.053

With mask 0.275+0.049
−0.060 0.825+0.081

−0.092 0.776+0.045
−0.049

Table 7.2: Summary of cosmological constraints for Ωm, σ8, and S8 with and without
masking.

This suggests that the masking treatment in our pipeline is effective, and the presence of
masked regions does not significantly bias the cosmological parameter constraints.

Unexpectedly, we find that the posterior contours obtained from masked data are in some
cases slightly tighter than those obtained from unmasked data, particularly for σ8. This
is counter-intuitive, as masking typically removes information and increases statistical
uncertainty, It is important to note that the emulators were trained on unmasked data
only, which makes this observation even more surprising.

One possible explanation is that masking may incidentally suppress certain noisy, lead-
ing to a smoother or more “regularized” parameter likelihood. Another possibility is
that the apparent tightening arises from statistical fluctuations, particularly if the sample
variance in the masked maps happens to align more coherently with the emulator’s pre-
diction space. In the masked case, the scattering coefficients are computed as the average
over approximately 20 realizations (corresponding to the number of “good” square maps
that can be extracted from the DES Y3 footprint), whereas in the unmasked case, the
coefficients are averaged over 260 realizations. Further investigation is required to fully
understand this effect, but overall, the difference is small and does not significantly alter
the inferred cosmological constraints.
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Figure 7.19: Marginalized posterior distributions for Ωm, σ8, and S8 fromMCMC sampling
using four tomographic bins. Blue contours and lines correspond to the case without
masking, while green represents the case with masked pixels in the input convergence
maps. The masks are based on the DES Y3 footprint. Note: this is still a simulated
likelihood analysis, using realistic survey masking but not real observational data.
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Chapter 8

Conclusion

In this thesis, we have explored the use of scattering transform coefficients as a summary
statistic for weak gravitational lensing maps, with the aim of constraining cosmological
parameters beyond what is achievable using conventional two-point statistics. The scat-
tering transform is a hierarchical, nonlinear, and translation-invariant feature extractor
that is structurally inspired by convolutional neural networks but fully deterministic and
interpretable. It preserves multiscale information in the input field by cascading wavelet
modulus operators and averaging, thereby encoding non-Gaussian features and complex
structures in a way that is robust to noise and local deformation.

The motivation for employing the scattering transform in the context of cosmology stems
from the growing interest in non-Gaussian statistics. While the power spectrum (or
two-point correlation function) captures all the information in Gaussian fields, the weak
lensing convergence field is inherently non-Gaussian on small and intermediate scales due
to nonlinear structure formation. Traditional approaches such as higher-order moments,
bispectrum, and peak statistics attempt to capture this non-Gaussian information, but
often come with challenges related to noise sensitivity and complex theoretical modeling.
The scattering transform offers a promising alternative by encoding a broad range of non-
Gaussian features in a structured and physically interpretable manner.

Throughout this work, we computed the first- and second-order scattering coefficients on
simulated weak lensing convergence maps from the CosmoGridV1 simulation suite. These
coefficients were computed for various tomographic bins and angular scales, allowing us to
retain both redshift and spatial information. We examined the behavior of the scattering
coefficients under variations in cosmological parameters, intrinsic alignment amplitude,
and several nuisance systematics. We then constructed emulators that map cosmological
parameters to scattering coefficients using neural networks, and used these to perform
parameter inference via MCMC.

Our results demonstrate that the scattering transform is particularly sensitive to the pa-
rameters Ωm and σ8, which directly control the amplitude and shape of the matter power
spectrum. The parameter S8 = σ8 (Ω8/0.3)

0.5, which is well-constrained by weak lensing
observables, is also effectively constrained by the scattering statistics. On the other hand,
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parameters such as w0, ns, H0 and Ωb, which primarily affect background evolution or de-
tailed shape changes of the power spectrum, are less constrained by scattering transform
coefficients. Intrinsic alignment parameters and shear calibration systematics also show
limited sensitivity.

Importantly, we carried out masking-aware preprocessing to handle real survey conditions,
such as those mimicked from the DES Y3 footprint. By applying a conservative masking
rule based on the wavelet effective support, we ensured that the scattering coefficients
were computed only from reliable, unmasked regions. Our masking strategy introduces
a small information loss but avoids the risk of contamination from missing pixels. The
robustness of the method was validated through a comparison between masked and un-
masked maps, with posterior contours remaining largely consistent.

We also assessed the accuracy and reliability of the emulator and inference pipeline
through convergence tests and visual inspection of MCMC posterior. The fiducial cosmol-
ogy was found to lie well within 68% credible regions for Ωm, σ8 and S8 in all tomographic
bins, indicating that the emulator was sufficiently accurate for the parameter space ex-
plored. The sharp boundaries seen in certain parameter planes reflect the imposed hard
prior ranges rather than emulator artifacts.

In conclusion, the scattering transform provides a powerful and interpretable summary
statistic for weak lensing analysis. It enables the extraction of non-Gaussian informa-
tion in a way that complements and extends traditional two-point statistics. Our work
confirms that scattering statistics can deliver competitive constraints on key cosmologi-
cal parameters such as Ωm, σ8 and S8 with robustness to moderate levels of noise and
masking. As future large-scale surveys like Euclid deliver higher-fidelity lensing maps
with greater sky coverage and tomographic resolution, we anticipate that methods like
the scattering transform will play an increasingly important role in extracting the full
statistical power of the data.

Looking forward, several avenues for improvement and extension remain. First, reducing
the dimensionality of the scattering coefficients using PCA or autoencoders could im-
prove emulators performance and inference speed. Second, we are currently applying the
developed pipeline to real DES Y3 data, which will allow us to evaluate the practical
effectiveness of the scattering transform in a realistic survey setting.
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Appendix A

Hankel transform

In this appendix, we will derive Hankel transform, a special kind of Fourier transform in
the context of isotropy.

First, we have a brief introduction to the Bessel function, in the form of integral. The
mathematical expression for nth order Bessel function (n is an integer here) is expressed
as:

Jn (x) =
1

2π

∫ π

−π

ei(nτ−x sin τ)dτ . (A.1)
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Figure A.1: The filter functions J0 (x) and J4 (x) play a role in the relationships between
the cosmic shear correlation functions ξ± (θ) and the convergence power spectrum Pκ (ℓ).
For a given angular scale θ, the filter J0 (x) = J0 (θℓ) places more emphasis on lower
frequencies ℓ compared to the filter J4 (x) = J4 (θℓ). As a result, the function ξ+ (θ) is
more responsive to large-scale density fluctuations than ξ− (θ) at the same angular scale
θ.
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We consider the two-dimensional Fourier transform of a function φ (x), which shows a
circular symmetry. This means that φ (r cos θ, r sin θ) ≡ f (r, θ) is independent of θ. The
Fourier transform of φ is

Φ (ζ, η) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y) e−i(xζ+yη)dxdy . (A.2)

where we introduce two polar coordinates:
x = r cos θ y = r sin θ , (A.3)

and
ζ = ρ cosφ η = ρ sinφ . (A.4)

Because of the circular symmetry, we have:
Φ (ρ cosφ, ρ sinφ) ≡ F (ρ, φ)

=

∫ ∞

0

∫ 2π

0

f (r) e−irρ cos(θ−φ)rdrdθ

=

∫ ∞

0

rf (r) dr

∫ 2π

0

e−irρ cos(θ−φ)dθ

=

∫ ∞

0

rf (r) J0 (ρr) dr .

(A.5)

This shows that F (ρ, ϕ) is independent of ϕ so that we can write F (ρ) instead of F (ρ, ϕ).
Therefore, the two-dimensional Fourier transform of a circularly symmetric function is,
in fact, a Hankel transform of order zero.

In general, Hankel transform could be regarded as the circularly symmetric form of Fourier
transform. And we could, therefore, write down the Hankel transform in the following
way:

F (ρ) = 2π

∫ ∞

0

rf (r) Jn (ρr) dr = 2πHn [f (r)] ,

f (r) =
1

2π

∫ ∞

0

ρF (ρ) Jn (ρr) dρ =
1

2π
H−1

n [F (ρ)] .

(A.6)

If we apply this into the shear-shear correlation function, the derivation follows. First,
let’s expand shear with Fourier transform,

γ (θ) =

∫
d2ℓ

(2π)2
γ (ℓ) eiℓ·θ , (A.7)

γ (θ +α) =

∫
d2k

(2π)2
γ (k) eik·(θ+α) . (A.8)

With Kaiser-Squire relation, Eq. (3.39), we can reformulate above equations as:

γ (θ) =

∫
d2ℓ

(2π)2
κ (ℓ) ei2ϕℓeiℓ·θ , (A.9)

γ (θ +α) =

∫
d2k

(2π)2
κ (k) ei2ϕkeik·(θ+α) . (A.10)
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Then the correlation function between these two shear is given:

⟨γ (θ) γ (θ +α)⟩ = 1

(2π)4

〈∫
d2ℓ

∫
d2kκ (ℓ)κ (k) ei2ϕℓei2ϕkeiℓ·θeik·(θ+α)

〉
=

1

(2π)4

∫
d2ℓ

∫
d2k ⟨κ (ℓ)κ (k)⟩ ei2ϕℓei2ϕkeiℓ·θeik·(θ+α)

=
1

(2π)4

∫
d2ℓ

∫
d2k (2π)2 δD (k + ℓ)Pκ (ℓ) e

i2ϕℓei2ϕkeiℓ·θeik·(θ+α)

=
1

(2π)2

∫
d2ℓPκ (ℓ)e

i4ϕℓe−iℓ·α

=

∫
dℓ

2π
ℓPκ (ℓ) J4 (ℓα) .

(A.11)
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Appendix B

Discrete Fourier transform and
power spectrum

In this appendix, we will introduce the Discrete Fourier Transform (DFT). In this project,
we used get_power_spectrum1 function to measure the binned power spectrum.

In Section 2.2, we introduced the continuous Fourier transform and its formalism. How-
ever, since real-world signals are not of infinite length, the Fourier transform cannot be
expressed as an integral over the entire real line from negative infinity to positive infinity.
Instead, it is represented as a summation given by:

F (kn) =
N∑

n=−N

f (x) e−iknx , (B.1)

where F (kn) represents the amplitude at frequency kn and and the summation consists
of 2N + 1 terms. For a function f (x) defined on the interval [0, L], we assume it is
periodically extended over the entire real line (−∞,+∞). The function f (x) could be
extended as:

f (x) =
N∑

n=−N

F (kn) e
iknx, x ∈ [0, L] . (B.2)

Because of the periodic property, we have:

f (x± L) = f (x) . (B.3)

Using Eq. (B.2), we could rewrite Eq. B.3 as

N∑
n=−N

F (kn) e
ikn(x±L) =

N∑
n=−N0

F (kn) e
iknL . (B.4)

This holds for any x ∈ [0, L]. So, we could easily see that

e±iknL = 1 for all n . (B.5)
1https://github.com/SihaoCheng/scattering_transform/blob/master/ST.py
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Therefore, we have to choose the frequency that satisfies the following equation:

knL = 2mπ m ∈ Z . (B.6)

So, kn could be written as kn = 2πn
L
, where n = 0,±1,±2, . . . ,±N, . . . . For an interval

[0, L], we assume that T = 2N + 1 points are evenly spaced across it.

f (xm) = f

(
L

T
∗m
)

where m = 0, 1, 2, . . . , 2N . (B.7)

To match the sampling rate, we need 2N +1 frequencies as well. In the following, we will
introduce another property of DFT. By making n = N + 1 and n = −N , we have:

kN+1 − k−N =
2π

L
× (N + 1)− 2π

L
× (−N) =

2π

L
(2N + 1) . (B.8)

This leads the equivalent property of Fourier kernel:

eikN+1xm = ei[k−N+ 2π
L
×(2N+1)]xm

= eik−Nxm × ei
2π
L
×(2N+1)xm

= eik−Nxm × ei
2π
L
×(2N+1) L

2N+1
m

= eik−Nxm × ei2πm

= eik−Nxm × 1 .

(B.9)

With this property, we can easily see that there are two equivalent choices of frequency
sets:

kn =
2π

L
[0, 1, 2, . . . , N,N + 1, N + 2, . . . , 2N ] , (B.10)

kn =
2π

L
[0, 1, 2, . . . , N,−N,− (N − 1) , . . . ,−2,−1] . (B.11)

In this thesis, we will take the Eq. (B.11) convention.

We assume that the input image has a dimension of (M,N), where M is an even number
and N is an odd number. Then, in numpy.fft.fft2, the elements of the resulting Fourier-
transformed matrix are distributed across the following frequency components:

(0, 0) (0, 1) · · ·
(
0, N−1

2

) (
0,−N−1

2

) (
0,−

(
N−1
2

− 1
))

· · · (0,−2) (0,−1)

(1, 0) (1, 1)
. . . . . . . . . . . . . . . . . . ...

... . . . . . . . . . . . . . . . . . . . . . ...(
M
2
− 1, 0

) . . . . . .
(
M
2
− 1, N−1

2

) (
M
2
− 1,−N−1

2

) . . . . . . . . .
(
M
2
− 1,−1

)(
−M

2
, 0
) . . . . . .

(
−M

2
, N−1

2

) (
−M

2
,−N−1

2

) . . . . . . . . .
(
−M

2
,−1

)(
−
(
M
2
− 1
)
, 0
) . . . . . . . . . . . . . . . . . . . . .

(
−
(
M
2
− 1
)
,−1

)
... . . . . . . . . . . . . . . . . . . . . . ...

(−2, 0)
. . . . . . . . . . . . . . . . . . (−2,−2) (−2,−1)

(−1, 0) · · · · · ·
(
−1, N−1

2

) (
−1,−N−1

2

) (
−1,−

(
N−1
2

− 1
))

· · · (−1,−2) (−1,−1)



.

(B.12)
where the first number in the parentheses represents the frequency along axis-0, and the
second number corresponds to the frequency along axis-1. And the vertical and horizontal
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lines here divide the matrix into four pieces which could be used in the following.

When calculating the power spectrum, we are concerned only with the magnitude of the
frequency, not the direction of the frequency vector. To achieve this, the matrix is divided
into four sections, and these sections are shifted so that the low-frequency components
from each section are aligned at the center of the matrix:[

A B
C D

]
→
[
D C
B A

]
. (B.13)

where A, B, C, D represent the top-left, top-right, bottom-left and bottom-right sections
of the matrix in Eq. (B.12). To compute the magnitude of the frequency, we first calculate
the distance of each point in the shifted matrix Eq. (B.13) to its center. Then, we define
a logarithmic range of k, and for each interval [k [i] , k [i+ 1]), we compute the mean value
of the Fourier-transformed modes whose distances fall within this range. This mean value
is taken as the power spectrum at the frequency k [i]. Fig. B.1 and (B.2) shows the
process of calculating the binned power spectrum with a specific example.
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(a) Before shifting frequency to center

-5.0-4.0-3.0-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0
k1/kf1

-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0

k 0
/k

f0

Fourier Space

0

1

2

3

4

5

6

7

k2 0
+

k2 1

(b) After shifting frequency to center

Figure B.1: These two figures show the frequency distribution after using numpy.fft.fftn
to do DFT. Left figure is the frequency distribution without using numpy.fft.fftshift
to move the low frequency to the center, while right one used. They both follow the
convention of python, which means that the vertical direction is axis-0 starting from top
to bottom, and horizontal direction is axis-1 starting from left to right. Here I set vertical
length to beM = 12 and horizontal length to be N = 11. Two kf shown in the x/y labels
are the basis frequency so that we have kf0 = 2π

M
and kf1 = 2π

N
, and then the number

of two axes are the relative value corresponding to their basis frequency, following the
convention described in Eq. (B.11). So after the DFT, the total frequency is decreasing
from the center to four corners. Then, we shift the sections, like Eq. (B.13), so that the
lowest total frequency,

√
k20 + k21 = 0, is located in the center of the matrix.
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Figure B.2: Calculate the average power spectrum in each frequency bins. The Fourier
transformed value at each point is calculated using the frequency value corresponding to
the coordinates (pair of frequency) of that point. After shifting the zero frequency to the
center, we set evenly distributed logarithm scale range starting from 0 to maximum total
frequency. Then we calculate the binned power spectrum by averaging the DFT value
whose total frequency lies in the rings of logarithm scale range (regions between ksmall

and kbig), shown as red points in the plot.
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Appendix C

Translation Invariance

In this appendix, we will introduce some basic properties of translation-invariance and
show that why we need non-linearity to construct the estimators for scattering transform.

First, let’s begin with the linear operator. The following two properties are the definition
of linear operator:

h (u+ v) = h (u) + h (v) , (C.1)
h (cu) = ch (u) , (C.2)

where h (·) is a linear operator, u and v are the arbitrary vectors, c is a constant.

Another operation is orthogonal transformation. An orthogonal operator is a linear opera-
tor T on a finite-dimensional or infinite-dimensional inner product space (usually over real
space R or complex space C) that preserves the inner product of vectors. Mathematically,
for any vector u and v in the space, we have:

⟨T (u) , T (v)⟩ = ⟨u,v⟩ , (C.3)

where ⟨·, ·⟩ denotes the inner product.

Now, we could introduce translation transformation. A translation operator is a math-
ematical operator that shifts a function, vector or field by a fixed amount in a given
direction, without altering its shape or other intrinsic properties. Let Lc denote the
translation operator that shifts a function f (x) by c. The action of Lc on f (x) is defined
as:

Lcf (x) = f (x− c) . (C.4)
Translation operator is also an orthogonal operator, which means:

⟨Lcf, Lcg⟩ = ⟨f, g⟩ . (C.5)
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This property could be proved in the following way:

⟨Lcf, Lcg⟩ =
∫ ∞

−∞
f (x− c) g (x− c) dx

=

∫ ∞

−∞
f (x′) g (x′) dx′

= ⟨f, g⟩ .

(C.6)

The third important operator is convolution operator, which is also a kind of linear oper-
ation. The convolution of two functions f and g is defined as:

(f ⋆ g) (x) =

∫
f (v) g (x− v) dv . (C.7)

Then its linearity follows easily:

(f ⋆ (αg1 + βg2)) (x) =

∫
f (v) (αg1 (x− v) + βg2 (x− v)) dv

=

∫
αf (v)g1 (x− v) +

∫
βf (v) g2 (x− v) dv

= α (f ⋆ g1) (x) + β (f ⋆ g2) (x) .

(C.8)

In this project, we used wavelet convolution, and this operator commutes with translation
operator. The mathematical expression can be written as:

Lc (f ⋆ ψ) = (Lcf) ⋆ ψ , (C.9)

where ψ here denotes the convolution kernel and ⋆ is the convolution operator. The proof
of this property follows. First, the expression of convolution between ψ and f (x) is given
by:

(f ⋆ ψ) (x) =

∫
f (v)ψ (x− v) dv . (C.10)

Then, the translation of the convolution is:
Lc (f ⋆ ψ) (x) = (f ⋆ ψ) (x− c)

=

∫
f (v)ψ ((x− c)− v) dv

=

∫
f (v)ψ (x− c− v) dv .

(C.11)

And we do the convolution with translated f (x):

((Lcf) ⋆ ψ) (x) =

∫
(Lcf) (v)ψ (x− v) dv

=

∫
f (v − c)ψ (x− v) dv

=

∫
f (w)ψ (x− c−w) dw

=

∫
f (v)ψ (x− c− v) dv ,

(C.12)
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where we used v = w + c from the second line to third line, and then v = w for the
variable substitution from the third line to the fourth line. Comparing Eq. (C.11) and
(C.12), we could find that translation operator commutes with convolution operator.

If R is a linear or non-linear operator which commutes with translation, R (Lcf (x)) =
Lc (Rf (x)), then the integral

∫
Rf (x) dx is translation invariant. The proof is given:

Lc

(∫
Rf (x) dx

)
=

∫
LcRf (x) dx

=

∫
RLcf (x) dx

=

∫
Rf (x− c) dx

=

∫
Rf (x) dx .

(C.13)

IfR here is the wavelet convolution kernel, ψ, we use in this project, then
∫
f (x) ⋆ ψ (x) dx

gives a translation invariant value.

The second thing we need to prove now is that why we need non-linearity to construct the
estimators for scattering transform. Suppose we have a cosmological field, like convergence
field, κ (x), which has vanishing mean. And we apply some linear operator like convolution
or Fourier transform to this field, and calculate the spatial average directly withouth any
non-linear transform, like modulus. The result of this value should be zero. But first, we
have to prove that spatial average operation commutes with convolution operators. The
proof is given as:

⟨(κ ⋆ ψ) (x)⟩ =
∫

(κ ⋆ ψ) (x) dx

=

∫ (∫
κ (y)ψ (x− y)dy

)
dx

=

∫ (∫
κ (x− u)ψ (u)du

)
dx

=

∫
ψ (u)

(∫
κ (x− u)dx

)
du

=

∫
ψ (u) · 0 du

= 0 .

(C.14)

Thus, a non-linear operation is needed to contruct the estimators for scattering transform.
And we chhose the modulus operation here. Intuitively, it’s very easy to see that mod-
ulus and spatial average operation are both translation invariant. Thus, the scattering
coefficients are translation invariant.
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Appendix D

Kaiser-Squire inversion

In this appendix, we are going to explain why the shear field is a spin 2 field and derive
the Kaiser-Squire inversion in a more detailed way.

D.1 Spin 2 fields
A spin-s field is a field that transforms by a phase factor eisα under a local rotation of
the coordinate system by an angle α. If a field has spin weight s, then under the local
rotation of the coordinate system by an angle α, the field transforms as

f ′ = eisαf , (D.1)

which means that:

• A spin-0 field (s = 0) returns to the same value after any rotation.

• A spin-1 field (s = 1) returns to the same value after a 2π rotation.

• A spin-2 field (s = 2) returns to the same value after a π rotation.

To prove that the shear field is a spin-2 field, we start with the local Cartesian coordinates
system (x, y) in a small patch of the sky. The shear components as defined as:

γ1 =
1

2

(
∂2

∂2x
− ∂2

∂2y

)
ψ , (D.2)

γ2 =
∂2

∂x∂y
ψ . (D.3)

To see how shear fields transform under a rotation, we consider a rotation of the coordinate
system by an angle α:

x′ = x cosα− y sinα , (D.4)
y′ = x sinα + y cosα . (D.5)
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Then the first order derivatives of ψ with respect to the new coordinates are:
∂

∂x′
=
∂x

∂x′
∂

∂x
+
∂y

∂x′
∂

∂y
= cosα

∂

∂x
− sinα

∂

∂y
,

∂

∂y′
=
∂x

∂y′
∂

∂x
+
∂y

∂y′
∂

∂y
= sinα

∂

∂x
+ cosα

∂

∂y
.

(D.6)

And the second order derivatives are:
∂2

∂x′2
= cos2 α

∂2

∂x2
− 2 sinα cosα

∂2

∂x∂y
+ sin2 α

∂2

∂y2
,

∂2

∂y′2
= sin2 α

∂2

∂x2
+ 2 sinα cosα

∂2

∂x∂y
+ cos2 α

∂2

∂y2
.

(D.7)

Also, for the second order mixed derivatives:
∂2

∂x′∂y′
= cosα sinα

∂2

∂x2
+ (cos2 α− sin2 α)

∂2

∂x∂y
− cosα sinα

∂2

∂y2
. (D.8)

With these transformations, we can rewrite the shear components in the new coordinates:

γ1 =
1

2

(
∂2

∂x′2
− ∂2

∂y2

)
ψ = − sin 2α

∂2

∂x∂y
ψ ,

γ2 =
∂2ψ

∂x′∂y′
=

1

2

(
sin 2α

(
∂2

∂x2
− ∂2

∂y2

)
+ cos 2α

∂2

∂x∂y

)
,

(D.9)

which shows that the shear field goes back to its original state after rotating by π and
thus is a spin-2 field.

D.2 Flat sky Kaiser-Squire inversion
In the flat sky limit, the shear field can be written in terms of the Fourier transform of
the potential field ψ as follows::

γ̃1 (ℓ1, ℓ2) =
1

2

(
−ℓ21 + ℓ22

)
ψ̃ (ℓ1, ℓ2) , (D.10)

γ̃2 = −ℓ1ℓ2ψ̃ (ℓ1, ℓ2) , (D.11)

whereas the convergence field in Fourier space is:

κ̃ (ℓ1, ℓ2) = −1

2

(
ℓ21 + ℓ22

)
ψ̃ (ℓ1, ℓ2) . (D.12)

Thus, the shear field can be written in terms of the convergence field as:
γ̃ (ℓ) = γ̃1 (ℓ) + iγ̃2 (ℓ)

=
ℓ21 − ℓ22
ℓ21 + ℓ22

κ̃+ i
2ℓ1ℓ2
ℓ21 + ℓ22

κ̃

=

(
ℓ1 + iℓ2

ℓ

)2

κ̃ (ℓ) ,

(D.13)

where ℓ =
√
ℓ21 + ℓ22.

132



Cosmological Parameter Constraints with Weak Lensing Scattering Transform

D.3 Spin weighted spherical harmonics
Spin-weight spherical harmonics sYℓ,m are a generalization of the standard spherical har-
monics Yℓ,m and are used to describe fields with intrinsic spin on the sphere. For example,
spin-0 spherical harmonics, just the usual spherical harmonics, could be used to describe
the scalar field, like convergence field. Spin-1 spherical harmonics are able to depict vector
fields, like electric and magnetic fields. Spin-2 spherical harmonics are used to describe
the tensor field, like CMB, gravitational wave and shear field.
Spin-weighted spherical harmonics also have the orthogonality property:∫

S2
sYℓ,ms′Ȳℓ′,m′dΩ = δss′δℓℓ′δmm′ , (D.14)

where dΩ = sin θdθdϕ is the solid angle element on the sphere and δ here represents
Kronecker delta function. This property enables us to expand the fields on the sphere in
terms of the spin-weighted spherical harmonics like normal spherical harmonics.

The spin could be raised or lowered by the following two operators:

Spin-raising operator:

ð (sYℓ,m) = +
√

(ℓ− s)(ℓ+ s+ 1)s+1Yℓ,m . (D.15)

Spin-lowering operator:

ð̄ (sYℓ,m) = −
√

(ℓ+ s)(ℓ− s+ 1)s−1Yℓ,m . (D.16)

D.4 Full sky Kaiser-Squire inversion
With the equation mentioned above, Eq. (D.15) and (D.16), we could rewrite the con-
vergence field in terms of the raising and lowering operators as [93] :

κ =
1

4

(
ðð̄+ ð̄ð

)
ψ . (D.17)

Also, the expression of shear field under these operators is:

γ = γ1 + iγ2 =
1

2
ððψ . (D.18)

Expanding the projected potential field, spin-0 convergence field, as well as the spin-2
complex shear field in terms of the spin-weight spherical harmonics, 0Yℓ,m and 2Yℓ,m, leads
to the following expressions:

ψ (θ, ϕ) =
∑
ℓ,m

ψ̃ℓ,m 0Yℓ,m (θ, ϕ) , (D.19)

κ = κE + iκB =
∑
ℓ,m

(κ̃E,ℓ,m + iκ̃B,ℓ,m) 0Yℓ,m , (D.20)

γ = γ1 + iγ2 =
∑
ℓ,m

(γ̃E,ℓ,m + γ̃B,ℓ,m) 2Yℓ,m . (D.21)
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Taking the raising operator and lowering operator into Eq. (D.17) and (D.18), we can
expand κ and γ field using spin-0 spherical harmonics as:

κ =
1

4

(
ðð̄+ ð̄ð

)
ψ

=
1

4

(
ðð̄+ ð̄ð

)∑
ℓ,m

ψ̃ℓ,m 0Yℓ,m

=
1

4

∑
ℓ,m

ψ̃ℓ,m

(
ðð̄+ ð̄ð

)
0Yℓ,m

=
1

4

∑
ℓ,m

ψ̃ℓ,m (−ℓ(ℓ+ 1)− (ℓ+ 1)ℓ) 0Yℓ,m

= −1

2

∑
ℓ,m

ℓ(ℓ+ 1)ψ̃ℓ,m 0Yℓ,m

=
∑
ℓ,m

(κ̃E,ℓ,m + iκ̃B,ℓ,m) 0Yℓ,m ,

(D.22)

γ =
1

2
ððψ

=
1

2
ðð
∑
ℓ,m

ψ̃ℓ,m 0Yℓ,m

=
1

2
ð
∑
ℓ,m

ψ̃ℓ,m

√
(ℓ− 1)(ℓ+ 2) 1Yℓ,m

=
1

2

∑
ℓ,m

ψ̃ℓ,m

√
(ℓ− 1)(ℓ+ 2)

√
ℓ(ℓ+ 1) 2Yℓ,m

=
∑
ℓ,m

(γ̃E,ℓ,m + iγ̃B,ℓ,m) 2Yℓ,m .

(D.23)

Then, we can get the relation between convergence field, potential field and shear field as:

κE,ℓ,m + iκB,ℓ,m = −1

2
ℓ (ℓ+ 1)ψℓ,m , (D.24)

γE,ℓ,m + iγB,ℓ,m =
1

2

√
ℓ (ℓ− 1) (ℓ+ 1) (ℓ+ 2)ψℓ,m , (D.25)

κE,ℓ,m + iκB,ℓ,m = −

√
ℓ (ℓ+ 1)

(ℓ+ 2) (ℓ− 1)
(γE,ℓ,m + iγB,ℓ,m) . (D.26)

Eq. (D.26) is the harmonic space spherical-sky generalisation of the Kaiser-Squire (KS)
inversion formula. An inversion spherical-harmonics transform on the full-sky maps of
the convergence and shear fields. We have to mention here that when the convergence
field comes from simulation usually without noise, then the convergence field is real, and
the B-mode vanishes. So, we have κsim = κE,sim and κB,sim = 0. However, this does not
imply that the expansion coefficients are necessarily zero, i.e., κE,ℓ,m ̸= 0 and κB,ℓ,m ̸= 0,
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since the spherical basis are complex functions. This also implies that γE,ℓ,m, γB,ℓ,m, γ1
and γ2 do not always vanish. In fact, γ1 and γ2 should be non-zero since both of them
could be generated from the full-sky κ map.
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Appendix E

Systematic effects

In this appendix, we will introduce some systematic effects and explain how they affect
the observed shear fields.

E.1 Intrinsic alignment
Intrinsic alignment [67, 94, 95, 96] refers to the physical alignment of galaxy shapes due
to local gravitational interactions, rather than distortions caused by weak gravitational
lensing. This effect can introduce biases [69, 97, 98, 99, 100] in the measurement of cosmic
shear, as it correlates galaxy shapes in a way that is independent of the lensing signal.
Understanding and modeling intrinsic alignment is crucial for accurate cosmological pa-
rameter estimation. To introduce how intrinsic alignment affects the observed shear fields,
let’s first define the shape of galaxies and halos:

Iij (xg) =
1

N

∫
dr ρg (r) rirj , (E.1)

where ρg refers to the mass density of galaxies at position xg (usually the center of the
galaxy), and r ≡ x − xg, the normalization factor N =

∫
dr ρg (r). Because of the

statistical isotropy, the shape of an object after the ensemble average must be spherically
symmetric, implying that the off-diagonal elements of the moment of inertia tensor are
zero and the eigenvalues must be equal in all directions:

⟨I11⟩ = ⟨I22⟩ = ⟨I33⟩ =
1

3
⟨TrI⟩ . (E.2)

Thus, the total moment of inertia tensor can be written as:

⟨Iij⟩ =
1

3
⟨TrI⟩ δij . (E.3)

Then we could define the fluctuations of shape, Sij, as the deviation from the ensem-
ble average. Just like the scalar density contrast 1 + δg (x) ≡ ng(x)

⟨ng⟩ , the mathematical
expression for this tensor fluctuation is:

δij + Sij (x) ≡
Iij (x)

⟨TrI⟩ /3 . (E.4)
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By separating the trace and trace-free parts, the shape fluctuation tensor can be written
as:

Sij (x) =
TrS (x)

3
δij + S⟨ij⟩ (x) , (E.5)

where δij is Kronecker delta and this term depicts the scaling, and the second term S⟨ij⟩ is
the trace-free part of the shape fluctuation tensor, which describes the distortion. Similar
to shear, we could also write the shape fluctuation tensor in terms of the second order
derivative of the potential ∂i∂jΦ (x). The linear theory, linear alignment (LA) model,
assumes that the three-dimensional tensor Sij is linearly related to the second derivative
of the potential [69] (similar to the linear bias relation in galaxy clustering δg (x) = b1δ (x))
:

Sij (x) = bKKij (x) , (E.6)
where Kij is the rescaled, dimensionless tidal field tensor, and bK is the linear alignment
amplitude. The tidal field tensor is defined as:

Kij (x) ≡
(
∂i∂j −

δij
3
∇2

)
Φ (x)

4πGa2ρ̄m (a)

=

(
∂i∂j
∇2

− δij
3

)
δ (x) ,

(E.7)

where we get the second line by using Poisson equation ∇2Φ = 4πGa2ρ̄mδ. In Fourier
space, the tidal field is given by:

Kij (k) =

(
k̂ik̂j −

δij
3

)
δ (k) , (E.8)

where k̂i and k̂j are the unit vectors in the direction of i and j. We consider a Fourier
mode aligned with the z-axis, k = kẑ. Then the contribution of this mode to Sij (x) can
be written as

Sij (x) ⊃ bK

(
k̂ik̂j −

δij
3

)
δ (k) eik·x |k=kẑ =

−1
3

0 0
0 −1

3
0

0 0 +2
3

 bKδ (k) eik·x . (E.9)

Thus, the LA model predicts that a Fourier mode k introduces a distortion pattern in
the form of a plane wave with amplitude bKδ (k), shown in Fig. E.1. Measurements from
simulation and observed galaxies show that bK < 0 [101]. The above discussion is based
on three-dimensional patterns. In actual observations, we could only have projected two-
dimensional shapes on the plane perpendicular to the line of sight. The two dimensional
trace-free components of the projected shape tensor γij can be obtained by applying the
projection to the linear alignment model, yielding:

γ1 (x) =
bK
2

∂21 − ∂22
∇2

δ (x) , (E.10)

γ2 (x) = bK
∂1∂2
∇2

δ (x) . (E.11)
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Or equivalently, in Fourier space:

γ1 (k) =
bK
2

(
k̂21 − k̂22
k2

)
δ (k) =

bK
2

(
1− µ2

)
cos 2ϕkδ (k) , (E.12)

γ2 (k) = bK

(
k1k2
k2

)
δ (k) =

bK
2

(
1− µ2

)
sin 2ϕkδ (k) , (E.13)

±2γ (k) ≡ γ1 (k)± iγ2 (k) =
bK
2

(
1− µ2

)
e±2iϕkδ (k) , (E.14)

where µ ≡ k̂ · ẑ = k̂3 and ϕk ≡ tan−1
(
k̂2/k̂1

)
. Thus, the intrinsic alignment is already

anisotropic due to the projection effect. We define the E-mode and B-mode fields by
rotating ±2γ in Fourier space to cancel the phase part factor as:

E (k) + iB (k) ≡±2 γ (k) , (E.15)

which leads to the expression of E-mode and B-mode:

E (k) =
bK
2

(
1− µ2

)
δ (k) , (E.16)

B (k) = 0 . (E.17)

Thus, calculating the power spectra of E-mode and galaxy number density contrast with
linear bias, δg (x) = b1δ (x), we have:

PgE (k, µ) = b1
bK
2

(
1− µ2

)
Plin (k) , (E.18)

PEE (k, µ) =
b2K
4

(
1− µ2

)
Plin (k) . (E.19)

Ref.[68] proposed an empirical model based on the linear alignment where the linear mat-
ter power spectrum appear in Eq. (E.18) and (E.19) is replaced by the non-linear matter
power spectrum, Plin (k) → PNL (k). And this model is called the non-linear alignment
(NLA) model. The NLA model is widely used in the literature to model the intrinsic
alignment effect.

Since the IA correlation of galaxies mimics the part of shear correlation, so if we assume the
observed shape of galaxies is purely due to the gravitational lensing effect, the constraints
on cosmological parameters will be biased. Rather, the observed galaxy shape should
include both weak gravitational lensing (G) and intrinsic alignment (I) effect:

γobs = γG + γI , (E.20)

where we assumed that both of the distortions are very small [102]. Then the angular
power spectrum of the observed galaxy includes three terms:

Cobs
ℓ = CGG

ℓ + CII
ℓ + CGI

ℓ . (E.21)

Fig. E.2 illustrates how the weak lensing and IA effects are correlated.
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Figure E.1: The IA model predicts a distortion pattern in galaxy shapes. The black curve
illustrates large-scale Fourier modes along the z-axis (horizontal in the figure) derived from
the density field δ (x). The ellipsoids (blue and red) and the sphere (yellow) depict the
distortion patterns induced by this mode based on the LA model with bK < 0 [101]. The
first row shows statistical predictions, indicating that while individual galaxies (orange
shapes in the second row) exhibit scattered shapes, the large-scale pattern is statistically
aligned. If the ẑ direction is perpendicular to the line of sight, the observed distortion
pattern manifests as tangential stretching and squeezing, revealing the distortion in galaxy
shapes (third row). Conversely, if the ẑ direction aligns with the line of sight, the observed
(projected) distortion pattern appears as radial scaling effect (fourth row).

 

Figure E.2: Illustration of weak lensing and intrinsic alignment effects. Purple color (A
and B) represents the observed galaxies. A distant galaxy (A) is lensed by a foreground
mass distribution, shown as orange circles. The intrinsic alignment effect (B) is due to the
local gravitational interaction of galaxies, which introduces IA effect. The GI correlation
corresponds to the correlation between A and B.
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E.2 Shape noise
In this section, we are going to introduce the shape noise from shear and convergence
maps. Since the shear field and convergence field are connected through Kaiser-Squire
Inversion, we can start from the shape noise from shear fields. Because of the Central
Limet Theorem, the shape noise from the observed shear field is Gaussian distributed,
and can be expressed as:

N = N1 + iN2 , (E.22)
where N1 and N2 are both Gaussian random variables with zero mean and the same
standard deviation for the real part and imaginary part of the shear field. The standard
deviation of the shape noise is given by:

σx =
σe√

A · neff

, (E.23)

where σx represents the value in position space (where we could express it to be σk in
Fourier space), σe is the shape noise parameter and neff is the galaxy effective number
density.

Based on Kaiser-Squire Inversion under flat sky approximation in Eq. (3.39), we could
express it in position space as:

κ = ∇−2∂∗∂∗γ , (E.24)

where ∂ = ∂1 + i∂2 and then ∂∗ = ∂1 − i∂2, and ∇−2 = 1
∂∗∂

is the inverse Laplacian
operation. By expanding this equation and the shear field, we could have:

κ = ∇−2∂∗∂∗γ

= ∇−2 (∂1 − i∂2) (∂1 − i∂2) (γ1 + iγ2)

= ∇−2 [(∂1∂1 − ∂2∂2) + 2i∂1∂2] (γ1 + iγ2) .

(E.25)

Since κ field is a real-valued field, we need to ignore the imaginary part, which leads to:

κ = ∇−2 [(∂1∂1 − ∂2∂2) γ1 − 2∂1∂2γ2] . (E.26)

This equation is the general expression for the correlation between convergence and
shear fields. For the real observed data, we should include the noise term mentioned
in Eq. (E.23) to the shear:

γobs = (γ1,true +N1) + i (γ2,true +N2) , (E.27)

where the subscript obs refers to the observed shear field, true refers to the true shear
field and N is the shape noise from N ∼ (0, σx). By taking Fourier transform on both
sides of Eq. (E.26), we have:

κ̃obs =
1

ℓ2

[(
ℓ21 − ℓ22

) (
γ̃1 + Ñ1

)
− 2ℓ1ℓ2

(
γ̃2 + Ñ2

)]
, (E.28)
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where the ˜ represents the Fourier transform of the field. Since the shape noise is Gaussian
distributed, the Fourier transform of the shape noise is also Gaussian distributed. And
the relation of the std of the shape noise in position space and Fourier space is:

σx̃ · σk =
1

2π
, (E.29)

where σk is the std of the shape noise in Fourier space. Here we care only about how the
shape noise contributes to the real convergence field so that we could add this directly to
the simulation convergence field. With the property that the summation of two Gaussian
random variables is also a Gaussian random variable, we could calculate the variance of
the Gaussian field on convergence maps:

σ̃2
κ,k =

((
ℓ1

2 − ℓ2
2
)

ℓ2

)2

σ̃2
1,k +

(
2ℓ1ℓ2
ℓ2

)2

σ̃2
2,k

=

(
ℓ1

2 + ℓ2
2
)2

ℓ4
σ̃k = σ̃k ,

(E.30)

which is exactly the same as the shape noise in the shear field. Thus, we could conclude
that the shape noise in convergence maps is also Gaussian distributed with the same
standard deviation as the shear field.
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Appendix F

Fibonacci sphere sampling

Fibonacci sphere is a method [74, 75] to generate evenly distributed samples on the sphere.
This method is based on the Fibonacci sequence and the golden ratio, and we use this
irrational number to generate angular steps, ensuring quasi-uniform and non-repetitive
coverage of the sphere. The azimuthal angle is sampled using the following equation:

ϕ =

(
2πi

g

)
mod 2π , (F.1)

where mod is the modulo operation, g = 1+
√
5

2
is the golden ratio, and i is the index of

the sample, which ranges from 0 to N − 1 if we want to sample N points. The modulo
operation ensures that all the values of ϕ are between 0 and 2π. The use of the golden
angle, an irrational number, makes sure that the sampled points are not the same in
which the case of using integers. By using more samples, the azimuthal angle will be
more evenly distributed. The polar angle θ is sampled using the following equation:

θ = arccos

(
1− 2 (i+ 0.5)

n

)
, (F.2)

where N is the number of samples. The polar angle θ is sampled in such a way that the
points are evenly distributed in the vertical direction, from north to south pole. Fig. F.1
shows an example of the Fibonacci sphere sampling method. These samplings are not
strictly uniform, but are quasi-uniform and non-repetitive.

Using the evenly distributed points on the sphere, we can extract square maps from the
full-sky maps. The method employed here is the Gnomonic Projection [76], an azimuthal
map projection that maps the surface of a sphere onto a tangent plane from a single point
at the sphere’s center. The centers of these projections correspond to the points sampled
from the Fibonacci sphere. A key property of this projection is that all great circles on
the sphere are represented as straight lines on the plane. This is analogous to placing a
flat sheet tangent to a globe and projecting the surface onto the sheet from the globe’s
center. This type of projection is valid only for points within a 90◦ angular distance from
the center, effectively capturing a hemispherical region without introducing distortion
singularities.
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Fibonacci Sampling

0 1

Figure F.1: Illustration of the Fibonacci sphere sampling method. In order to deliver a
better illustration, 10000 points are chosen on a sphere with NSIDE = 512, this number
is much smaller in practice.The yellow dots represent the sampled points on the sphere,
which is approximately uniform distribution.

The purpose of sampling points on the sphere is to ensure that the projection centers are
sufficiently spaced apart. This avoids overlap and ensures efficient use of the data while
maximizing map coverage. The size of the square maps is determined by the number of
pixels to be sampled, and the rotation angle of the squares is carefully chosen to prevent
overlapping regions.
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